
3 system overview: two cores, shared DRAM

The system consists of two cores: the critical core, and the best-efort core.
Those cores have their own caches but share DRAM and memory bus:

┌────────────────┐ ┌───────────────────┐
│ critical core: │ │ best-effort core: │
│ hierarchical │ │ media player │
│ scheduler │ │ │
│ │ │ │
├────────────────┤ shared memory bus ├───────────────────┤
│ cache ├─────────┬─────────┤ cache │
└────────────────┘ │ └───────────────────┘

┌───┴────┐
│ shared │
│ DRAM │
└────────┘

3.0.1 the critical core

The critical core runs critical tasks. The mixed-criticality scheduler6, as well
as all the critical groups, reside on the critical core.

6. Deinition of scheduler: Computers are capable of executing several programs concur-
rently – or seemingly so. Actually, the CPU switches from program to program, executing
each just so much as to create the illusion that everything happens in parallel. This makes
for responsiveness to the user, but also better use of hardware resources: for example, while
one program waits for user I/O, it yields the CPU to another, computational-intense pro-
gram, as the irst program cannot make use of the CPU anyway, lacking the I/O data. A
special program descides what program executes, and when: the scheduler. This program
is part of the kernel as it is needs access to the memory. There are several scheduling algo-
rithms that the scheduler can employ to make its choise what program to run. Programs
are associated a run-time data strutcture - the process - that will provide the scheduler
with uniform metadata on the state of the program, in execution. That data will be used
as input, along with the scheduling algorithm, and based on that input, the scheduler will
descide what process will get access to the CPU.

6



5 The task inite state machine

Each individual task belongs to one (and only one) state, always.

┌──────────────┐
│ UNEMPLOYED │<───────────────┐
└──┬───────────┘ │

│ (a) │
v │

┌─────────┐ │
┌──┤ READY │<────────┐ │

(f) │ └────┬────┘ │ (c) │
│ │ │ │
│ │ (b) ┌────┴──────┐ │
│ └────────>│ RUNNING │ │ (e)
│ └──┬─────┬──┘ │
v │ │ (d) ┌───┴────┐

┌───────────┐ │ └──────>│ HOLD │
│ DELAYED │<──────────────┘ └────────┘
└───────────┘ (f)

5.1 transitions

Transitions occur regularly, and at the same time for all tasks, namely when
the global scheduler interrupts execution to reasses the state of the sys-
tem.

(a) The task is employed; it arrives. This happens after a semi-random
delay: in practice, the task should arrive sooner rather than later.

(b) The task has the most immediate deadline in the system of all tasks
that belong to non-depleted schedulers; the task is passed to the CPU
for execution.

(c) The task is preempted by another task from a non-depleted task sched-
uler, a task with a more immediate deadline.

(d) The task is completed and is released by the CPU.

15



6 System model

6.1 the top-scheduler

g is the singular (root) top-scheduler; it schedules task-schedulers:

g = (l, p, r, S, a) (1)

parameter name (unit) description

l lifetime seconds The system lifetime. This is the amount
of time that the top-scheduler will execute,
from the time of invocation. As the top-
scheduler is the topmost body of the sys-
tem, l is equal to the system lifetime as
well.

p period seconds The global period. At the very begin-
ning of each period (which is equal to
the very end of the preceding period), the
task-schedulers (that is, all s ∈ S) have
their budgets resupplied to their individ-
ual, pre-assigned levels.

r rate seconds The scheduling rate by which g will sched-
ule S. At every r, execution comes to a
halt, and resumes.

S schedulers The set of task schedulers that the top-
scheduler schedules.

a algorithm The scheduling algorithm that g applies to
S, in order to select what task to execute
(for all s ∈ S). The algorithm updates and
maintains the statuses of all other tasks
and schedulers as well.

18



For each remaining (available) student, the greedy algorithm would calculate
a score based on certain conditions. For example, each students could start
with at score of 100. Then,

(1) the student is assigned the service [at least once] -7
(2) (for each such assignment) -2
(3) the student is assigned the minimum requirement -20
(4) (for each assignment above that) -5
(5) the student is assigned the maximum requirement disqualify

(6) the student is assigned one more shift today -10
(7) for each shift the same week, prior to today -4
(8) ditto month, prior to this week -2

The greedy algorithm would pick the student with the highest score. After
that, everything would happen again, only for the next slot (and so on).

This is an AI, greedy, search algorithm. It is AI, since the score system
emulates (or, rather, implements, with 100% consistency, and 0% flexibility)
how a human would think:

(A) “All students should at least try each service, even if
there isn’t time to acquire any real skill.”

(1)1

(B) “Students should get the same quantity of practice.” (2) (4)

(C) “Students should acquire skills, experience, and confi-
dence.”

(3)

(D) “Students shouldn’t do the same thing over and over
again, instead, it is preferable they recuperate and/or
assimilate what they have learned.”

(5)

(E) “Individual student activity should be distributed, so
the student is given time to digest his or her experience,
discussing it with fellow students, and so on, to be able
to perform better the next time around — also, that will
make for a more robust, persistent experience, that he
or she won’t instantly forget.”

(6) (7) (8)

1. This column indicates how a (human) thought has been formalized into a building
block of the AI algorithm (as shown in the previous listing). However, as for the AI
algorithm’s end result, it was my intention that all seven point deductions (as well as the
one disqualification) more or less should contribute to all five goals.

18


