
HS(1) EmanuelBerg Computing Manual HS(1)

NAME
hs - hierarchical scheduler

SYNOPSIS
hs

[-d | --debug] [-f | --freeze-core]
[-h | --hard]
[-l | --log] [-m | --memory-budget-add-on TERM]
[-p | --poll-llc]
[-P | --fork-processes]
[-q | --quiet] [-Q | --really-quiet]
[-r | --run] [-s | --system TASK-SYSTEM-FILE]
[-v | --verbose] [-w | --wait-for-forked-processes]

DESCRIPTION
hs is a hierarchical scheduler. It executes either hard-coded software, or forked processes, according to a
polled-preemptive global EDF algorithm acting on the real-time parameters of the sporadic task model.

OPTIONS
-d, --debug

Output various hard-coded debug information.

-f, --freeze-core
Do freeze the best-effort core when it exceeds its DRAM budget. To do this, perf_event_open(2)
is used along with a Linux cgroup. The use of-f implies --poll-llc because that is how DRAM
fetches are booked. Note: For this to work, either run hs with ’sudo’; or, set the owner of hs to
root, and then set the SUID bit; or, do something else that amounts to the same.

-h, --hard
Exit the scheduler with error code -1 immediately if a task is delayed.

-l, --log Log the time in nanoseconds at every tick to the filetick_times.log in the same directory as hs.

-m, --memory-budget-add-onTERM
Add TERM to all memory budgets.

-p, --poll-llc
Every tick, poll the DRAM last-level-cache (LLC) to find out how many non-cached DRAM
accesses the best-effort core has made.

-P, --fork-processes
Don’t use hard-coded mock software; fork processes.This means the system file must consist of
commands (including their arguments) that are executable on the underlying system. E.g., to do
the equivalent of echo hello fool put /bin/echo(hello fool) in the system file. (At this point hs can-
not mix mock software and real processes; and, absolute paths to executables are required.) The
easiest way to use this is to put all commands in a script, and then use that script in the system file.
(When freezing and thawing, the process group id (PGID) is used, as to affect offsprings of the
script as well.)

EMA Tools 2014November 16 1

HS(1) EmanuelBerg Computing Manual HS(1)

-q, --quiet
Don’t output task state transitions. Hard-coded task software should typically be quiet as well
although that has to be coded explicitly in hs.

-Q, --really-quiet
As --quiet only shut up hard-coded task software as well.

-r, --run
Run the system when it is loaded without confirmation.(Sometimes though it is useful to have the
system only loaded, not executed, to be triggered exactly when needed.)

-s, --systemTASK-SYSTEM-FILE
Load the system from the specified file. Creating systems interactively is just fun and games: it is
much better to exclusively use files. Use this with--run to execute a system from a file.

-v, --verbose
Every tick, output the state of the entire system.

-w, --wait-for-forked-processes
At the end of the execution of hs,wait(2) for all forked processes to terminate. Use with care: with
non-terminating processes this makes hs non-terminating as well. This option overrides the
"Global lifetime" parameter as long as there are children left.-w implies --fork-processes
because otherwise there are none to wait for.

TASK SYSTEM
A task system is defined in a task-system text file. There are a couple of examples in./hs-linux/sys - other-
wise, run hs interactively to see how a system is expressed, then put the exact same in a text file. If need be,
later modify the selfsame text file to fine-tune the system, rather that creating one anew interactively.

DOCUMENTATION AND CREDITS
There is an ambitious PDF document that describes this project:./hs-linux/docs/report.pdf

QUESTIONS AND FEEDBACK
Written by Emanuel Berg<embe8573@student.uu.se> for Uppsala University, 2014.

SEE ALSO
fork(2), signal(2), wait(2), perf_event_open(2)

EMA Tools 2014November 16 2

