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NAME
hs - hierarchical scheduler

SYNOPSIS
hs

[ -d | --debug ] [ -f | --freeze-core ]
[ -h | --hard ]
[ -l | --log ] [ -m | --memory-budget-add-on TERM]
[ -p | --poll-llc ]
[ -P | --fork-processes ]
[ -q | --quiet ] [ -Q | --really-quiet ]
[ -r | --run ] [ -s | --system TASK-SYSTEM-FILE ]
[ -v | --verbose ] [ -w | --wait-for-forked-processes ]

DESCRIPTION
hs is a hierarchical scheduler. It executes either hard-coded software, or forked processes, according to a
polled-preemptive global EDF algorithm acting on the real-time parameters of the sporadic task model.

OPTIONS
-d, --debug

Output various hard-coded debug information.

-f, --freeze-core
Do freeze the best-effort core when it exceeds its DRAM budget. To do this, perf_event_open(2)
is used along with a Linux cgroup. The use of-f implies --poll-llc because that is how DRAM
fetches are booked. Note: For this to work, either run hs with ’sudo’; or, set the owner of hs to
root, and then set the SUID bit; or, do something else that amounts to the same.

-h, --hard
Exit the scheduler with error code -1 immediately if a task is delayed.

-l, --log Log the time in nanoseconds at every tick to the filetick_times.log in the same directory as hs.

-m, --memory-budget-add-onTERM
Add TERM to all memory budgets.

-p, --poll-llc
Every tick, poll the DRAM last-level-cache (LLC) to find out how many non-cached DRAM
accesses the best-effort core has made.

-P, --fork-processes
Don’t use hard-coded mock software; fork processes.This means the system file must consist of
commands (including their arguments) that are executable on the underlying system. E.g., to do
the equivalent of echo hello fool put /bin/echo(hello fool) in the system file. (At this point hs can-
not mix mock software and real processes; and, absolute paths to executables are required.) The
easiest way to use this is to put all commands in a script, and then use that script in the system file.
(When freezing and thawing, the process group id (PGID) is used, as to affect offsprings of the
script as well.)
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-q, --quiet
Don’t output task state transitions. Hard-coded task software should typically be quiet as well
although that has to be coded explicitly in hs.

-Q, --really-quiet
As --quiet only shut up hard-coded task software as well.

-r, --run
Run the system when it is loaded without confirmation.(Sometimes though it is useful to have the
system only loaded, not executed, to be triggered exactly when needed.)

-s, --systemTASK-SYSTEM-FILE
Load the system from the specified file. Creating systems interactively is just fun and games: it is
much better to exclusively use files. Use this with--run to execute a system from a file.

-v, --verbose
Every tick, output the state of the entire system.

-w, --wait-for-forked-processes
At the end of the execution of hs,wait(2) for all forked processes to terminate. Use with care: with
non-terminating processes this makes hs non-terminating as well. This option overrides the
"Global lifetime" parameter as long as there are children left.-w implies --fork-processes
because otherwise there are none to wait for.

TASK SYSTEM
A task system is defined in a task-system text file. There are a couple of examples in./hs-linux/sys - other-
wise, run hs interactively to see how a system is expressed, then put the exact same in a text file. If need be,
later modify the selfsame text file to fine-tune the system, rather that creating one anew interactively.

DOCUMENTATION AND CREDITS
There is an ambitious PDF document that describes this project:./hs-linux/docs/report.pdf

QUESTIONS AND FEEDBACK
Written by Emanuel Berg<embe8573@student.uu.se> for Uppsala University, 2014.

SEE ALSO
fork(2), signal(2), wait(2), perf_event_open(2)
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