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Abstract

Multicore mixed-criticality with a hierarchical
real-time scheduler and resource servers

Emanuel Berg

This is a real-time mixed-criticality system on a dual-core Linux desktop. The
hardware/software architecture employs memory throttling so that modules can be
isolated in execution as well as in analysis/certification.

There are two asymmetrically dedicated cores. A critical core runs a hierarchical
scheduler (hs) with critical software: hard-coded, or Linux processes with associated
metadata. The best-effort core runs arbitrary software.

The cores share DRAM and the memory bus. Best-effort activity can delay critical
software. Interference is throttled/bounded to retain real-time computability.

When necessary, hs freezes/thaws best-effort core software. Task schedulers have
budgets to bound memory interference. If depleted, the best-effort core is frozen
whenever tasks from such a scheduler execute. Budgets are reset periodically.

The scheduling algorithm is a polled-preemptive EDF, with critical-group CPU
budgets. Task model: sporadic.

Two resource servers uphold isolation in the face of shared resources: memory, and
critical-core CPU time.

A memory experiment shows that best-effort core activity is throttled dynamically.
Alas, the submission mechanism lacks precision in worst-case scenarios: hs is itself
suspectible to best-effort interference, so the throttling mechanism can brake before
it can effectuate.
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15 001
Examinator: Edith Ngai
Ämnesgranskare: Philipp Ruemmer
Handledare: Pontus Ekberg



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 criticality groups . . . . . . . . . . . . . . . . . . . . . 7
1.3 real-time isolation . . . . . . . . . . . . . . . . . . . . . 9
1.4 different kinds of computer systems . . . . . . . . . . . 10

1.4.1 hybrids and gray zones . . . . . . . . . . . . . . 11
1.4.2 where does this project fit in? . . . . . . . . . . 12

1.5 why a real-time multicore? . . . . . . . . . . . . . . . . 13
1.6 meta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 System overview: two cores, shared DRAM . . . . . . . . . . . 19

3.1 the critical core . . . . . . . . . . . . . . . . . . . . . . 19
3.2 isolation between the cores . . . . . . . . . . . . . . . . 19
3.3 the best-effort core . . . . . . . . . . . . . . . . . . . . 19

4 The Linux implementation . . . . . . . . . . . . . . . . . . . . 21
4.1 the real-time system . . . . . . . . . . . . . . . . . . . 21
4.2 the critical tasks . . . . . . . . . . . . . . . . . . . . . 22
4.3 perf_event_open(2) . . . . . . . . . . . . . . . . . . . 22
4.4 cgroups . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Real-time Linux and Unix . . . . . . . . . . . . . . . . . . . . 24
5.1 Linux real-time schedulers . . . . . . . . . . . . . . . . 24
5.2 the Linux and C++ clocks . . . . . . . . . . . . . . . . 25
5.3 hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 isolation . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.1 starvation . . . . . . . . . . . . . . . . . . . . 31
5.4.2 isolating the cores on Linux . . . . . . . . . . . 31

6 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 step-by-step description . . . . . . . . . . . . . . . . . 35
6.3 task priority . . . . . . . . . . . . . . . . . . . . . . . . 35

7 The task finite state machine . . . . . . . . . . . . . . . . . . 37
7.1 transitions . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



7.2 states . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8 System description . . . . . . . . . . . . . . . . . . . . . . . . 39

8.1 the top-scheduler . . . . . . . . . . . . . . . . . . . . . 40
8.2 how the time parameters relate . . . . . . . . . . . . . 41
8.3 task scheduler . . . . . . . . . . . . . . . . . . . . . . . 41

8.3.1 mi, the maximum best-effort core memory accesses 42
8.3.2 bi, the CPU-budget . . . . . . . . . . . . . . . 42
8.3.3 αi, the (task) scheduling algorithm . . . . . . . 42

8.4 Pi, the sporadic task set . . . . . . . . . . . . . . . . . 43
8.5 the sporadic task model . . . . . . . . . . . . . . . . . 43

8.5.1 task parameters . . . . . . . . . . . . . . . . . 43
8.5.2 task properties . . . . . . . . . . . . . . . . . . 44

9 Schedulability method: response time . . . . . . . . . . . . . . 45
9.1 rj, the worst-case response-time for tj . . . . . . . . . 45

9.1.1 Qj, queuing . . . . . . . . . . . . . . . . . . . 45
9.1.2 z, the response time in global periods . . . . . . 46
9.1.3 Q

g
j, group deadline queuing . . . . . . . . . . . 46

9.1.4 Qsj, cross-group (system) deadline queuing . . . . 46
9.1.5 depletion queuing . . . . . . . . . . . . . . . . 47
9.1.6 oj, the scheduling overhead . . . . . . . . . . . 47

9.2 ij, interference from the best-effort core . . . . . . . . 47
10 Schedulability method: resource server . . . . . . . . . . . . . 49

10.1 interval length . . . . . . . . . . . . . . . . . . . . . . . 50
10.2 sbf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.3 dbf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11.1 building blocks . . . . . . . . . . . . . . . . . . . . . . 53
11.2 design . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.3 zsh wrappers . . . . . . . . . . . . . . . . . . . . . . . 55

12 Contention experiment . . . . . . . . . . . . . . . . . . . . . . 56
12.1 setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
12.2 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 57

13 Best-effort core memory experiment . . . . . . . . . . . . . . . 58
13.1 the importance of this experiment: delays and overheads 58
13.2 systems . . . . . . . . . . . . . . . . . . . . . . . . . . 59

13.2.1 one-scheduler system: base-faculty-1 . . . . . 59
13.2.2 two-scheduler system: base-faculty-2 . . . . . 60

13.3 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 62
14 hs task systems experiment . . . . . . . . . . . . . . . . . . . 63

14.1 setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
14.2 what is a task system? . . . . . . . . . . . . . . . . . . 63

2



14.3 simulation issues . . . . . . . . . . . . . . . . . . . . . 64
14.4 the result data . . . . . . . . . . . . . . . . . . . . . . 64
14.5 systems and results . . . . . . . . . . . . . . . . . . . . 65

14.5.1 base . . . . . . . . . . . . . . . . . . . . . . . 65
14.5.2 long-ticks . . . . . . . . . . . . . . . . . . . 66
14.5.3 long-period . . . . . . . . . . . . . . . . . . . 67

14.6 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 68
15 Linux processes experiment . . . . . . . . . . . . . . . . . . . 69

15.1 advantages . . . . . . . . . . . . . . . . . . . . . . . . . 69
15.2 disadvantages . . . . . . . . . . . . . . . . . . . . . . . 70
15.3 systems and results . . . . . . . . . . . . . . . . . . . . 70

15.3.1 base-p . . . . . . . . . . . . . . . . . . . . . . 70
15.3.2 base-p-no-memory-budget . . . . . . . . . . . 71

15.4 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 72
16 Real real-time: audio experiment . . . . . . . . . . . . . . . . 74

16.1 system . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
16.2 execution . . . . . . . . . . . . . . . . . . . . . . . . . 76
16.3 ideal fallout . . . . . . . . . . . . . . . . . . . . . . . . 78
16.4 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 78

17 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A Appendix A: Memory experiment fallout . . . . . . . . . . . . 82

A.a base-faculty-1 . . . . . . . . . . . . . . . . . . . . . 83
A.b base-faculty-2 . . . . . . . . . . . . . . . . . . . . . 84

B Appendix B: Formulas . . . . . . . . . . . . . . . . . . . . . . 85
B.a system . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.b sporadic task model . . . . . . . . . . . . . . . . . . . . 85
B.c response time . . . . . . . . . . . . . . . . . . . . . . . 85
B.d resource server . . . . . . . . . . . . . . . . . . . . . . 85

B.d.a supply . . . . . . . . . . . . . . . . . . . . . . 86
B.d.b demand . . . . . . . . . . . . . . . . . . . . . 86

C Appendix C: hs code . . . . . . . . . . . . . . . . . . . . . . . 87
C.a man page for hs . . . . . . . . . . . . . . . . . . . . . . 87
C.b ask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C.c be . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C.d file_io . . . . . . . . . . . . . . . . . . . . . . . . . . 93
C.e global_scheduler . . . . . . . . . . . . . . . . . . . . 94
C.f llc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
C.g log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.h main . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.i options . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.j program . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3



C.k sporadic_task . . . . . . . . . . . . . . . . . . . . . . 113
C.l task_scheduler . . . . . . . . . . . . . . . . . . . . . 118
C.m tcb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C.n time_io . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D Appendix D: experiment code and example data . . . . . . . . 135
D.a example hs system . . . . . . . . . . . . . . . . . . . . 135
D.b useful zsh commands . . . . . . . . . . . . . . . . . . . 136
D.c zsh wrapper to run experiments . . . . . . . . . . . . . 140
D.d tick trace cruncher in Elisp . . . . . . . . . . . . . . . . 148

→ Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4



1 Introduction

Report update: April 27, 2015

The purpose of this project is to implement a hierarchical scheduler that
manages a real-time, mixed-criticality task system.

A mixed-criticality task system is a system where tasks of different criticality
levels are executed on the same physical platform. The tasks are divided into
groups according to their assigned criticality levels.

Real-time System

“An operating system capable of responding to an external
event in a predictable and appropriate way every time the
external event occurs.” [8, p. 374]

Hierarchical Scheduler

A hierarchical scheduler is a scheduler that consists of several
schedulers that are organized hierarchically, in a tree struc-
ture. The leaf schedulers are not themselves hierarchical, but
ordinary: they schedule processes (or tasks). All schedulers
above them, however, are hierarchical schedulers: they do
not schedule processes, but the schedulers at the level imme-
diately below.

The hierarchical scheduler and the hard real-time tasks all execute on a single,
separate core: the critical core.

In parallel, best-effort software runs on a dedicated core as well: the best-
effort core.

The cores share main memory, the DRAM, as well as the memory bus.

The theoretic scope of the project is to give methods to compute the response
times for the critical tasks, considering that the best-effort core software can
interfere because the hardware that is shared between the two cores.
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Response Time

The response time is the wall-clock time elapsed from when
the user invoked a command up and until the completion of
the program that is associated with that command. The user
does not have to be a human: it can be another program, e.g.,
a real-time scheduler.

The criticality groups must be isolated from each other so that the groups can
be separately executed and analyzed. What is more, the critical core must
be isolated from the best-effort core less the best-effort core monopolizes the
memory, shutting out the critical tasks from execution thus making them
miss their deadlines.

Deadline

In real-time computing, a task (typically a small program
instance) must not only be implemented to produce a correct
result (like any other piece of software), it must also complete
its computation before a certain time limit. Such a limit can
be expressed in different ways. The sporadic task model used
for this implementation expresses time constraints in terms of
a deadline for each task. The deadline is relative to the task
arrival time: it is thus a static parameter, attached to the
task much like the source code that is to be executed. If the
arrival of task ti is at time c, and ti has deadline Di, that
means in absolute time, ti must be completed no later than
c + Di, otherwise ti is considered a faulty piece of software,
no less so than was there a bug in its code, making it crash or
produce an incorrect result. (In some settings, a correct result
– which is delivered late – can have even worse consequences
than an incorrect result, that was delivered in time. [21, p.
9])

The solution is two resource servers. On the critical core a CPU-time resource
server monitors and limits the CPU time of individual groups as to prevent
starvation. Likewise, a resource server limits the allowed number of best-
effort core memory accesses.
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The purpose is to realize an architecture and implement a memory throttling
method that will make it possible to construct modular real time computer
systems whose parts can be analyzed in isolation.

1.1 goal

The goal of the project is to be able to:

1. execute tasks of different criticality levels on the critical core; while

2. executing best-effort software on the best-effort core; so that

3. software from either core can access the shared DRAM; but

4. best-effort core memory interference still does not break critical-task
schedulability analysis.

1.2 criticality groups

A critical group is a subset of all the real-time tasks in the system. The
critical groups are mutually exclusive: every task belongs to one (and only
one) critical group.

The reason to divide the critical tasks into groups is to be able to express
and employ a more flexible and fine-grained real-time system. In this project,
there are other parameters apart from the criticality level attached to each
group.

The task classifications are to be used by the real-time operating system to
guide its actions. Real-time analysis is to be applied to the groups as isolated
entities, and for an entire system one group at a time, as if the other groups
did not exist.
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Real-time Operating System

The real-time operating system (RTOS) is the software that
makes sure that the real-time tasks are executed in such a
way that they are all guaranteed to complete before their
deadlines expire. In principle, there should be several ways
to implement such a system. In practice, the most common
solution is to have a real-time scheduler instead of the ordi-
nary scheduler, and then to annotate each task with real-time
metadata, such as worst-case execution time and deadline.
The real-time scheduler will process the metadata, as well as
the overall system state (including the time), so that tasks
are enqueued and selected for execution in a manner that will
ensure compliance with the real-time constraints.

The reason to create a task-based system is that real-time systems interact
with the outside, physical world. Because there are so many aspects of
the physical world that can be measured, and in so many ways – and all
has to be done continuously, virtually in parallel – a powerful solution is
to employ a set of tasks, wherein each task is responsible for collecting and
processing data of one particular such aspect. For example, one task reports
temperature, another volume, yet a third system proximity to other objects,
and so on. This model mimics the general-purpose process-based computing
model, which in itself has many advantages.

There are several advantages to having several criticality groups:

• The system is more modular: tasks can be brought in and out as
groups, and each group can be analyzed for real-time schedulability
independently of the other groups.

• The system is more well-defined, and ordered. For example, by
assigning different CPU-budgets to different groups, the respective im-
portance of the groups as subsystems are made explicit: in turn, this
will affect the behavior of the system in execution.

• The system is more flexible: the different CPU-budgets assigned to
different groups can be used to assign a budget that is adopted to the
typical execution patterns of the tasks of that group.
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Schedulability

For any task set (where the tasks adhere to a specific task
model), and a particular scheduling algorithm, there is
a test than can determine schedulability. That test an-
swers the question: “Can the algorithm make a schedule,
that involves all the tasks in the set, so that, if they are
executed accordingly, all tasks will complete before their
deadlines?” If so, the task set has passed the schedula-
bility test for that algorithm: the task set is schedulable.

1.3 real-time isolation

The critical groups must be isolated from each other in real-time analysis.
If any one group is deemed schedulable, this must hold for any run-time
scenario which can involve the tasks of that group, as well as those of all
others. That is, in order to provide guarantees for a predictable execution
of the tasks of any one critical group, it is necessary to process the runtime
behavior of the tasks of all other groups as well.

Predictable

Computer systems are deterministic by definition. If they are
predictable, that determinism is lifted to a human level: the
user is able to make a statement – that something particular
will happen, and not later than at a certain time. The state-
ment is then proved to hold by use of formal methods. If the
statement holds in theory as well as practice, the system is
predictable, at least with respect to that particular statement.
A predictable system consists of a set of likewise predictable
statements/behavior patterns.

In practice, the resource server solution is an attempt to formalize and sim-
plify such considerations to the point where an individual group does not
have to be analyzed in a way that actively has to consider the peculiarities
of the other groups, their tasks, and statuses.
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Whenever needed, the system must intervene to prevent unruly behavior,
right before it happens. If the tasks of a certain group collectively have
depleted their allocated resources, the group must be hindered from further
activity, less it will jeopardize the predictability of tasks that belong to other
groups.

Resources

The resources of a computer can be either in hardware or
software. Hardware resources are the memory, the CPU, the
disk, etc. Such resources can be either static – e.g., the disk
size – or dynamic – e.g., the available memory at the time of
a certain workload. Resources can also be in software. If a
program has been assigned a certain number of memory ac-
cesses, this budget is a resource: if 0, it is a depleted resource
until it gets resupplied.

1.4 different kinds of computer systems

The genealogy of computer systems – from a desktop OS to a fully-fledged
real-time system in the physical world – can be sketched like this:

• interactive non-timesharing – This is a typical computer system for a
user to use for various, mundane purposes. The software that runs
on this system does not have any associated deadlines: everything is
simply executed without any guarantees, but also without any cum-
bersome real-time layer or metadata attached to executing programs.
Still, in some sense, even such systems are “real-time”, because human-
computer interaction would be unbearable if for example a keystroke
sometimes had to process for several seconds before the character ap-
peared on the screen.

• timesharing – A timesharing system is an interactive system, but it is
also a multiprogrammed and multitasked system that supports several
active users to be logged in at the same time. The implementations
of such systems often employs the process-based architecture, which is
also what is found in many real-time systems. This shows the proximity
between timesharing and real-time systems, the difference being the
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absence of deadlines in a timesharing system. In general, a timesharing
system is oriented toward active humans, who provide instructions what
the computer should do, while a real-time system is oriented toward
the outside physical world, and whatever goes on there is sampled and
processed as input to trigger various responses. [23, p. 3]

• soft real-time – Here, software is associated with deadlines. If a dead-
line cannot be held, however, that does not imply system-wide disfunc-
tion. Rather it is up to the system designers (and sometimes the user)
to figure out what to do in such an event.

• firm real-time – Here, deadlines are soft in the sense that breaches are
not encouraged, but allowed; on the other hand, deadlines are hard in
the sense that computation whose result arrives late has zero value, and
is discarded. (In some settings, delayed-computation data can even be
dangerous if used as if it had arrived in time.)

• hard real-time – Here, a deadline breach implies a system fault.

• critical real-time – Here, a deadline breach implies a hazard to people’s
health. Critical real-time obviously implies hard real-time. What is
not as obvious is that hard real-time does not imply critical real-time.
For example, consider a computer game: a fast-pace, interactive game
is for all practical purposes hard real-time, even though the implemen-
tation probably lacks explicit deadlines – still, if the game does not
react virtually instantly to inputs and in-game events, it is unplayable.
However, an unplayable game is not a hazard to the health of any living
thing, so for this reason it is not considered critical real-time.

1.4.1 hybrids and gray zones

The real-time system classifications are not cut in stone. Many system con-
sist of subsystems of different natures. Actually, there can be combinations
within a subsystem itself: consider a real-time system where software is as-
sociated with both a soft and a hard deadline. [6, pp. 2-3] If the program
does not complete before the soft deadline, the system reallocates resources
so the program will be more likely to complete, quicker. Only when the
task still has not completed at the time of the hard deadline, system fault is
flagged.
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1.4.2 where does this project fit in?

The hierarchical scheduler schedules pieces of software which all have param-
eter values – the real-time metadata. Thus, any system that runs on top of
hs will be at least a soft real-time system. But it could also be a firm or hard
real-time system, or something in between, with none or minimal changes
to the code required. Ultimately, it is the user who decides what software
will run and how that software will behave, and when. Those decisions will
shape the entire system, including its place in the real-time ladder.

As for now, what is hard-coded is the sporadic task model: software tasks
are annotated with the parameters WCET, deadline, and period.

WCET

WCET (Worst Case Execution Time) is the wall-clock time,
or response time, of a program: the amount of time that
passes from invocation to completion, in the worst possible
case (i.e., it is impossible that it could ever take any longer
to successfully terminate the task). The WCET parameter
is helpful in models, to do computation, and it can also steer
software behavior. Nonetheless, it is most often not possible
to derive the WCET, in spite of much Computer Science
research devoted to methods to that end. [19, p. 110]

There are several reasons WCET may be incomputable:
task-execution conditions may vary – externally (the physical
context), but also internally (e.g., system load); also, tasks
may depend on other tasks to complete before them, or to
release resources they have monopolized; and, the system
may be a multicore, or even distributed with asynchronous
message passing in between. [4, p. 3]

In this project, both in software and in analysis, it is assumed
the WCET is correct, wherever it appears. Actually, WCETs
are simply assigned by the user with no questions asked if it
is realistic or not. Wherever available, indata verification is
done in only terms of other parameter indata: the associated
software is not examined.
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The criticality side to it is even more unrestrictive. While the “criticality”
groups indeed can be arranged to express criticality (as in physical hazard)
they can just as well be thought of as labels of task groups that belong
to a certain local scheduler, with no criticality implication whatsoever – in
execution, the parameter values of the scheduler are what counts, not any
qualitative implication that the human mind is fond of doing.

Scheduler

Computers are capable of executing several programs concur-
rently – or seemingly so. Actually, the CPU switches from
program to program, executing each just so much as to create
the illusion that everything happens in parallel. [13, p. 117]
This makes for responsiveness to the user, but also better use
of hardware resources: for example, while one program waits
for I/O, it yields the CPU to another, computation-intense
program (as the program-put-on-hold cannot make use of the
CPU anyway, lacking I/O data). A special program decides
what program executes, and when: the scheduler. This pro-
gram is part of the kernel as it is needs memory and otherwise
hardware access. There are several scheduling algorithms that
the scheduler can employ to make its choise what program to
run. Programs are associated a run-time data structure – the
process control block, or PCB – that will provide the sched-
uler with uniform metadata on the state of the program in
execution. Contrary, on multicores, true concurrency do exist
as programs are executed in parallel, on different CPUs (or
cores).

The hierarchical scheduler does not do anything by itself, but in combina-
tion with different software sets, it can schedule as many different kinds of
systems.

1.5 why a real-time multicore?

Multicore architectures is one way the CPU industry brings faster computa-
tion to computers.
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Also, with multicores, there is more computation out of less power. This is
important not the least to embedded systems, which often have to operate on
a limited power supply. Embedded systems – because they apply to problems
outside the world of computers – are a huge implementation field for real-time
systems.

Real-time systems on multicores are yet rare, in part because of the increased
unpredictability due to the multiple sources of computation. This poses dif-
ficulties both theoretically – guaranteeing real time analytically – as well as
to enforce it in practice, because distributed computation implies communi-
cation and synchronization delays that must be bounded.

1.6 meta

The writer of this report as well as the programmer of all new related software
can be reached at embe8573@student.uu.se.
This is a BibTeX entry for this report:

@techreport{multicore-mixed-criticality-with-a,
author = {Emanuel Berg},
title = {Multicore mixed-criticality with a hierarchical real-time scheduler and resource servers},
institution = {Department of Information Technology, Uppsala University, Sweden},
type = {\unskip\space},
year = 2015

}

The report as well as the source code can be found at the author’s home
page: http://user.it.uu.se/∼embe8573
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2 Related work

The classical paper on hierarchical scheduling is [20]. However, the sched-
uler implementation of this project is not perfectly layered. Optimally, any
hierarchical outline relies on a one-way communication data flow, where su-
perior entities never ask (but only tell) the lesser components what to do
(and, whenever necessary, provide them with what they need to do it). For
a hierarchical scheduler, that translates to the root scheduler scheduling the
schedulers below solely based on their properties, without looking any fur-
ther below, and only after one particular scheduler has been favored would
that scheduler decide what of its task to execute, without the interference
of the above scheduler. Instead, because of practical considerations when
implementing the EDF algorithm, the root scheduler is not ignorant to what
happens at task level: contrary to just barking orders, it must poll the below
layers for information that will determine its decision.

EDF

EDF (Earliest Deadline First) is a real-time scheduling algo-
rithm. It requires each task be annotated a deadline (typically
an integer). This is a static, a-priori property; it should be
interpreted as the time interval between the release of the
task and when it must be completed, less it will be consid-
ered delayed (i.e., a failure for hard real-time systems). When
scheduling, the EDF-scheduler will select for execution the
task with the most immediate absolute deadline – that is,
the earliest deadline, first. Because the absolute deadline is a
function not only of the deadline task parameter, but also of
the run-time instant the task was released, EDF is a dynamic
scheduling algorithm.

Previous work to a large extent consider only two criticality levels: i.e., one
crticial level and one level which is best effort. [2] [24, pp. 299-308] In
this project, it is possible to implement and analyze an arbitrary number of
critical groups, and have best-effort software run in parallel.

In this project, unlike [2], there is not a best-effort sphere of possible memory
access once the allocated budget has been depleted. And, unlike [24], this
implementation is userspace only.
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In [5], the unusual memory architecture of a network-on-a-chip system (a
NoC) is used to provide isolation between criticality levels. Here, special-
ized hardware is used, including a predictable multiprocessor, whereas our
project uses commodity components which are by original design unpre-
dictable.

In [10], a monitor is (in part) instructing a scheduler what process to exe-
cute from the suggestions of four queues. The queues are a division based
on qualitative properties of the processes, so that such properties also influ-
ence what process to run. The algorithm is “slack”: context switches are
not always carried out at times of priority inversion. Instead, to decrease
overhead and improve best-effort quality-of-service, preemption occur only
at the very moment it has to, less a critical process will not be able to make
its deadline. Our project is similar to their but their solution is more so-
phisticated (and complicated). In our project, the critical groups (which can
come in any number) are holder of scheduling and real-time metadata that
is arbitrary and cannot be computationally derived from properties of the
processes which make up the groups. Also, our monitor serves only to freeze
the best-effort core – it doesn’t influence any scheduler on either core. And,
freezing always happens when the maximum allowed DRAM accesses have
been accounted, so our algorithm is not slack, either.

One of the most sensible suggestions to the problem how to uphold pre-
dictability while sharing resources is presented in [11]. Here, the shared
memory is divided into banks. However, the banks are not merely distributed
over the critical tasks – while that would indeed provide isolation between
criticality levels, it would do so at the price of no longer sharing the mem-
ory and thus have the whole system constantly operate at the bottom end
of what it is capable of. Instead, the tasks are dynamically mapped to the
banks by means of the scheduling algorithm. Consequently, the entire scope
of the capabilities of the system can be employed: at the very least, there is
the subdivision and distribution of memory; at most, there is unrestricted ac-
cess. The challenge is to find or (re)design an algorithm that maps the tasks
to the banks in such a way that the system can run on the most cylinders
the most of the time. In effect, the once contradictory poles – predictability
vs. resource sharing – are transformed into an optimization problem.

Also, in [9] the solution is a subdivision of the DRAM between the critical
tasks. Each critical task is assigned a DRAM bank. There is one critical task
for each bank. This means the critical tasks do not share memory anymore:
instead, they use their designated “virtual memory” bank which is a fraction
in size to the original DRAM. Nonetheless, what is innovative about this

16



project is that for each bank, alongside the singular critical task, there can
be an arbitrary number of best-effort tasks. Access to the bank memory
is granted according to a priority algorithm. Priorities are fixed with the
critical task in each bank having the highest priority. This uncomplicated
scheme has the benefit of providing complete isolation for the critical tasks,
both from each other and from the best-effort tasks. The drawback is that
resource utilization is sensitive to both the setup and the dynamic situation
of every execution.

Another impressive suggestion is [12]. Here, there are no dedicated cores –
all critical tasks, of any and all criticality levels, coexist across the cores.
Nor are there any budgets to be distributed by resource servers. This makes
for minimal a-priori arrangements. Also, there is no reliance on specialized
hardware.

The solution is based on subdividing all cores as well as the shared memory
along the criticality levels. A dynamic scheduling algorithm synchronizes the
cores so that only tasks from the same criticality level access memory at the
same time.

Interestingly, the authors comment on the type of solution that is presented
in our paper:

• Our solution is flexible in terms of managing processes – e.g., to include
arrivals. This is true, especially compared to monotonic scheduling.
However, their solution is even more flexible as all cores share all work.
The lack of a-priori metadata markup and budget assignments is a two-
sided sword. On the one hand, there is no room for humans to screw
up the algorithm. On the other hand, no expert human can tweak it
to perfection. In general, we say their solution is better, assuming a
time-tested dynamic algorithm to do the allocations.

• Our solution requires “a high design and implementation overhead”.
Here, it is unclear if this aims at the scheduling and throttling software,
or the a-priori setup of task systems and resource budgets. If it aims
at the software, our project shows such software is not insurmountable
to create. However, if it aims at the setup, we agree, and especially if
compared to their project, which does not require any of that.

• Our solution cannot be done with COTS components. COTS is “com-
mercial off the shelf” computer hardware. What truth there is to that
of course depends on the definition of “COTS”. In fact, a performance
monitor counter (PMC) is all specialized hardware that is required, and
such are found in many desktop PCs.
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3 System overview: two cores, shared DRAM

The system consists of two cores: the critical core, and the best-effort core:
Those cores share DRAM and memory bus.

┌───────────────┐ ┌──────────────────┐
│ critical core │ │ best-effort core │
│ │ │ │
│ │ │ │
│ hierarchical │ shared memory bus │ │
│ scheduler ├─────────┬─────────┤ media player │
└───────────────┘ │ └──────────────────┘

┌───┴────┐
│ shared │
│ DRAM │
└────────┘

Multicore Architecture

3.1 the critical core

The critical core runs critical tasks. The mixed-criticality scheduler, as well
as all the critical groups, reside on the critical core.

3.2 isolation between the cores

Whatever happens on the best-effort core cannot be allowed to influence
the execution of critical tasks to the extent that even a single critical task
cannot complete before its deadline. To that end, the interference from the
best-effort core is bounded by a parameter for each critical group. The value
specifies how many memory accesses the best-effort core is allowed to do for
a specific time span, while a task of that group is executing.

3.3 the best-effort core

The best-effort core runs a media player.
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To run a media player as the best-effort task is interesting because a media
player task does not lend itself to static real-time analysis. A media player is
user-oriented software. Some downgrade in quality can be tolerated. If the
media content is streamed from a network, data may be sketchy, and arrival
spotty; and, the service is most often designed to work on different end-
hardware platforms. [1, pp. 4-13] Also, any substantial quality improvement
can be detected by inspection.

As the real-time system can block the best-effort software from accessing
memory, the performance of the best-effort software can be much worse com-
pared to if it did not have to subject itself to the demands of the real-time
system. The extent of this performance downgrade is evaluated by executing
and measuring the media player, when it runs in parallel with the critical
task system.
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4 The Linux implementation

4.1 the real-time system

The hierarchical scheduler, or hs, that runs the critical tasks is written in
C++: C++ is fast, which matters because it is desirable to reduce the
scheduling overhead. The object oriented support in by C++ is also helpful
to express the different components of the hierarchical scheduler, which is
modular by concept. More generally, C++ is an extension of C, which is
the system programming language of choice since the early-mid 70s. [22, pp.
v-vi, 6, 41-42]

Programmers of real-time systems have discussed what makes for a good
implementation language for such systems. [7, pp. 20-22] provides a list
which in terms of technology amounts to:

• The language should come with debugging tools, including a compiler
which provide compile-time warnings and error messages, in order to
detect problems at the earliest stage possible.

• The language offers features for modular design and development, e.g.
user-defined datatypes (or classes).

• The language is portable, fast, and vast with respect to what problems
it can express and solve.

C++ does that, of course.

There is also a discussion whether such a programming language should in
itself include real-time functionality, and provide it transparently on any
platforms for which it is ported, or if real-time functionality can be delegated
the underlying OS, and just be accessed through an API. [7, pp. 22, 131]
(Bear in mind that those approaches are not mutually exclusive.)

In this project no attempt is made to avoid using OS functionality, and the
C++ used is all vanilla.

Both critical and best-effort cores run on Debian GNU/Linux. Linux is
a good all-around platform for programming; it comes with both general
and specific tools that were indispensible while developing the hierarchical
scheduler, and while setting up the overall dedicated-core architecture as well
as the framework to carry out the experiments.

The Linux kernel and distribution used for this project are:
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$ uname -a
Linux debian 3.16-2-amd64 #1 SMP Debian 3.16.3-2 (2014-09-20) x86_64 GNU/Linux

4.2 the critical tasks

The software of the critical tasks is written in C++. The task software is
hard-coded functions that are compiled together with the hierarchical sched-
uler – but, the task systems are independently defined, in text files, that are
read at run-time.

The tasks can run synthetic workloads or benchmarks to collectively produce
a behavior similar to a real system.

hs can also run ordinary Linux processes. If so, they are forked and controlled
by signals. The interface to define and later execute such systems is the same
as for the hard-coded task software, only, as for now, task software and Linux
processes cannot be mixed in a single system.

4.3 perf_event_open(2)

At every global tick, the hierarchical scheduler invokes the Linux
perf_event_open tools to poll the number of last level cache (LLC) misses
that originates from the best-effort core. An LLC miss implies a DRAM
fetch and use of the memory bus to communicate both the request and the
data. (Details on the caches are in [section 5.3, page 28].)

By booking the number of such requests, it is possible to calculate the number
of LLC misses since the beginning of the global period.

The outcome is at every tick compared to the maximum-allowed accesses
for the executing critical task. If the performed best-effort accesses exceed
the number allowed, the best-effort core is frozen: all software there will be
suspended, and only resume whenever a task executes that belongs to a task
scheduler with a non-depleted memory budget.

Because data is polled, and polled periodically, the best-effort core will be able
to exceed the number allowed often, as it can only be frozen on a scheduling
interrupt. This problem can be minimized by increasing the frequency of the
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global scheduling interrupts. However, there are other problems associated
with a high frequency: [section 16.2, page 77]

The problem of periodic, non-immediate enforcement of memory budgets
could possibly be avoided if over-use instead would trigger a kernel interrupt,
that would immediately freeze the best-effort core. In such an implementa-
tion, the memory budgets could be communicated to the kernel by means of
a syscall.

4.4 cgroups

To freeze and thaw the best-effort core, cgroups is used. This method stems
from the high-performance computing world (HPC) where it is often desired
to collectively suspend or activate process groups.
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5 Real-time Linux and Unix

Conventional wisdom has it that UNIX and Unix-like systems like Linux
cannot host real-time systems without considerable changes to their ker-
nels.

It is argued, because of the layered architecture – a kernel space, a userspace,
and asynchronous syscalls in between – that any userspace-only application
is inherently unpredictable. [15, pp. 17-18]

Furthermore, many Unix-like systems do not have a scheduler suitable for
shuffling real-time processes. (Linux has such features, but they need to be
enabled explicitly.)

While those arguments are true to form, whether they are true in essence
depends on the preferred definition of a real-time system. The definition
used for this project – “An operating system capable of responding to an
external event in a predictable and appropriate way every time the external
event occurs.” [8, p. 374] – is very much attainable on Unix-like systems,
with or without kernel surgery.

5.1 Linux real-time schedulers

As for kernel version 3.14, Linux provides four schedulers that may be more
fit for real-time purposes than the default one, which for its part maximizes
average throughput to benefit a varied dose of interactive computer use (e.g.,
editing).

The real-time schedulers are:

• SCHED_FIFO is a fixed-priority scheduler, only real-time processes do
not get preempted by common processes. If several real-time processes
have equal priority, the one who has the CPU will not let it go until
completed at what time another contender monopolizes the CPU.

• SCHED_RR is like SCHED_FIFO, only when several real-time processes
have equal priority, they do Round Robin, still excluding every other
process from the CPU.

• SCHED_OTHER is the round-robin, time-sharing algorithm where pro-
cesses execute for certain timeslices.
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• SCHED_DEADLINE is the EDF algorithm. This can likely be used to
enhance this project, which employs a somewhat modified brand of
EDF, and – when dealing with real Linux processes – enforces it with
userspace signals.

For this project, the ordinary Linux scheduler is used. To use a real-time
scheduling policy complicates matters, especially when hs forks processes
and then attempts to control them through signals. But in all fairness,
Linux has many features that ultimately can transform it to just about any
system – including a hard real-time system. For example, mlock(2) can be
used to lock the virtual address space of a process into the RAM. As nothing
of that has been touched upon, scheduling is left alone as well.

5.2 the Linux and C++ clocks

To uphold an even rate of periodic scheduling, the C++ library function
std::this_thread::sleep_until is used, which however may “block for
longer [than what has been specified] due to scheduling or resource contention
delays”. 1

Actually, there can be widely diverging results due to many factors. To illus-
trate the extent of imperfect periodicity -l (or equivalently --log) can be
used to have the hierarchical scheduler output the current time in nanosec-
onds, at every tick. (Again, the same library functions are used.)

It is likely that using a real-time scheduling policy for hs would result in a
more even tick rate, especially if hs is intended to run among many other
processes that are not real-time.

Here is a sample output for a period of one millisecond:

3594454136974
3594456742892
3594456842067
3594459262486
3594459326740
3594459349369
3594460102258
3594461102664
3594462098601

1. http://en.cppreference.com/w/cpp/thread/sleep_until
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3594463098448
3594464103883
3594465098703
3594466102182
3594467103985
3594468097687
...

Then, the following method is used to calculate the offsets from the intended
tick times:

offset_0 = time_1 - time_0 - DESIRED_TICK
offset_1 = time_2 - time_1 - DESIRED_TICK
...

This produces, for the example trace:

1524064
-958095
-488762
323073

-289016
1605918

-900825
1420419

-935746
-977371
-247111
406

-4063
-153
5435
...

Last, for all offsets acquired, some statistical data is computed:

readings: 9999
mean: 7.000000 # drift size
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variance: 1828079556
standard deviation: 42756.047011 # drift stability
min: -977371 # observed worst cases
max: 1605918

Note: It has been observed that the early tick times of a run are much more
inexact than those of the rest of the trace. This is the case in the above
example as well. It is telling that the first mere 15 readings contain both the
minimum value (–977371), and the maximum value (1605918), of all 9999
readings, whose mean is only seven! (For a longer trace, the mean would be
even smaller.) As for now, this behavior remains a mystery.

To exemplify, here are the offsets found at the end-most part of another
trace – a trace that likewise has a specified rate of a single millisecond. As
is typical, these offsets are much smaller than their early brethren.

10743
-431
-4902
3480

-4622
-153
6832
2642

-7696
3480
127

-152
-4622
-153

5.3 hardware

The hardware platform must be considered because the real-time task super-
structure and all the individual tasks share hardware resources. Specifically,
the critical tasks – including the hierarchical scheduler and the task software,
and all forked processes – share the critical core for CPU-execution; and, they
share the DRAM and the memory bus with the best-effort core. That has
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to be accounted for both in analysis, and in practice, where monitoring and
throttling is employed to hinder over-use of shared resources.

The CPU is a dual core x86_64:

$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Thread(s) per core: 1
Core(s) per socket: 2
Socket(s): 1
NUMA node(s): 1
Vendor ID: AuthenticAMD
CPU family: 15
Model: 35
Stepping: 2
CPU MHz: 1000.000
BogoMIPS: 1989.83
L1d cache: 64K
L1i cache: 64K
L2 cache: 512K
NUMA node0 CPU(s): 0,1

DRAM and memory bus usage is monitored with a PMC, which is accessed
by means of the perf_event_open Linux tools.

The L1 and L2 caches are not shared between the cores but appear pair-
wise, with one pair for each core. Save for the CPU registers, L1 is the
smallest memory storage unit, with 64K for data, and the same amount for
instructions. Below L1 is the 512K L2, which is the last level cache, or LLC,
right above the shared DRAM. Thus, a failed memory lookup at the second
level is indicative of an imminent DRAM access. In this project, LLC misses
are counted as a way to count fetches from the shared DRAM.
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best-effort core

cache L1

cache L2 = LLC

bus

DRAM

Memory Architecture. First a miss in the last-level-cache (LLC),
then a DRAM fetch.
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5.4 isolation

All critical groups must be isolated from all other critical groups, but they
must also be isolated from the best-effort software. Here, the intersection is
not the CPU, but the shared DRAM and the shared memory bus.

Isolate us! Resource sharing interference.

Isolation must be implemented in practice, as well as digested into something
that is formally computable, so it can be used to determine task response
times, and, later on, overall system schedulability. In this, software as well
as hardware are considered.

It is important to note that the word “isolation” is not used in the general
sense, but in terms of real time schedulability analysis and task response-
time computation. If A is isolated from B in terms of i, that does not mean
A is physically separated from B so that B cannot ever influence A. On the
contrary, it means that A is influenced by B precisely through i, only the
designers and implementors of the system has accounted for this, for example
by providing throttling mechanisms that in practice will provide a bound for
the worst-case interference B can have on A (through i). This bound is then
used in the response-time calculations, which is the theory mirror image of
the real-time implementation.
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5.4.1 starvation

Because the best-effort core and the critical core share the DRAM, and be-
cause the mechanism that throttles the best-effort core resides on the critical
core, it is possible that the best-effort core can overflow the memory, shutting
out the critical core to the extent that the critical core cannot throttle the
best-effort core, whose memory budget thus cannot be enforced. In terms of
real-time, that would immediately break the system.

5.4.2 isolating the cores on Linux

The cores on the project computer are originally general-purpose: the Linux
scheduler can execute any process on either. In order to turn these cores into
one critical core and one best-effort core, a kernel parameter is set that will
stop the Linux scheduler from using the best-effort core; then, a userspace
tool is used to start best-effort processes so they will only execute on their
designated core.

This turns the system into one where there are dedicated cores for specific
software: distribution of processes over the cores can be a function of a-priori
policy decisions.

To isolate one of the cores from the Linux scheduler until explicitely told
otherwise, in:

/etc/default/grub

put (or change) GRUB_CMDLINE_LINUX_DEFAULT into:

GRUB_CMDLINE_LINUX_DEFAULT="quiet isolcpus=1"

Then, run

sudo update-grub

and reboot.
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After that, here is how to execute a program, say, forever, exclusively on
CPU 1:

taskset -c 1 forever
# to confirm:
ps -o psr,comm -p `pgrep forever` # psr = processor = core

This method is used to invoke all best-effort software.

The method to isolate the best-effort core by setting a kernel parameter in
a GRUB initiation file does isolate the core from most processes that are
not explicitly told otherwise. Still, a few system processes remains on the
best-effort core, unaffected by the GRUB configuration. This is why, on the
critical core, the hierarchical scheduler and the critical-task software co-exists
with some modest Linux system software:

watchdog/1
migration/1
ksoftirqd/1
kworker/1:0
kworker/1:0H
kworker/1:1
kworker/1:2
kworker/1:1H

Fortunately, these processes are low-key: they demand CPU or memory re-
sources in quantities that are zero or negligible in the face of userspace pro-
cesses that are intentionally and explicitly invoked to be executed exclusively
on the best-effort core.

To illustrate, one execution of a media player on the best-effort core for
10 seconds booked 70464921 memory accesses. During this execution, no
activity what so ever could be detected from the above processes, which
were monitored with top(1).

A consecutive run of hs for another 10 seconds but with an idle best-effort
core (i.e., without the media player) booked the number of memory accesses
as: 0.
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6 Scheduling

There is a single, top-scheduler, that schedules task-schedulers at the level
below. The task-schedulers schedule tasks. At the down-most level reside
the individual tasks. The tasks are grouped and assigned one unique task-
scheduler: such a group of tasks, along with its scheduler, is the implemen-
tation of a criticality group.

Scheduling is done hierarchically. The top-scheduler is the highest entity.
The task-schedulers are at the level below, themselves at the same level:
they all belong to the top-scheduler. Scheduling is carried out at two levels:
at the level of the top-scheduler, and at the level of the task-schedulers.

Scheduling is also, conceptually, done in parallel, or vertically: every task-
scheduler schedules its task set. The tasks are themselves at the same, down-
most level, below the task-schedulers to which they belong. But, unlike the
task-schedulers, the tasks do not all belong to the same above scheduler: they
are grouped, together with their designated task-scheduler, into criticality
groups. There can be an arbitrary number of task-schedulers and each can
have a task set which contains an arbitrary number of tasks.

The task system can be visualized as a tree: the root (or top node) is the top-
scheduler; the n internal nodes immediately below are the task-schedulers;
and, at the third and lowest level, the k leafs (or terminal nodes) are the
individual tasks.
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┌───────────────────┐
│ global scheduler: │
│ l: lifetime │
│ p: period │
│ r: rate │
│ S: schedulers │
│ a: algorithm │
└───────┬───────────┘

│
┌────┴──────────────────────────┐
│ │

┌──┴─────────────────┐ ┌─────┴───────┐
│ local scheduler 1: │ ... │ scheduler n │
│ m: memory accesses │ └─────────────┘
│ b: CPU-budget │
│ P: tasks │
│ alpha: algorithm │
└───────┬────────────┘

│
┌────┴─────────────────────┐
│ │
│ │

┌──┴───────────────┐ ┌──┴─────┐
│ sporadic task 1: │ ... │ task n │
│ C: WCET │ └────────┘
│ D: deadline │
│ T: period │
└──────────────────┘

Hierarchical Scheduler

6.1 algorithm

The scheduling algorithm is global, budgeted, and preemptive EDF.

• It is global as it considers the critical tasks of all task-schedulers, and
compares them on a scheduler as well as task-by-task basis.

• It is budgeted as all task-schedulers are assigned a CPU-budget. For
each global period, the tasks of a particular task-scheduler can execute
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for a total time not exceeding that budget.

• It is preemptive as a task, once assigned the CPU, can later be re-
placed, and put back into the ready queue, before it has completed.
Here, the algorithm does not differ from the commonplace preemptive
EDF of real-time scheduling, except for one implementation-derived
detail: preemption can only be done at the time of a global scheduling
interrupt. Those occur regularly and frequently according to a system
parameter, which is set beforehand and thereafter does not change. Ar-
rival of new tasks also takes place at those interrupts, so a task with the
highest priority that just arrived will immediately preempt the CPU,
as long as the task-scheduler it belongs to has not depleted its budget.
So the algorithm is “polled-preemptive EDF”.

6.2 step-by-step description

Scheduling is defined as follows:

1. Execution regularly comes to a halt in order to do scheduling.

2. Whenever so, the top-scheduler tells all task-schedulers to do scheduling
of their respective task sets. In this implementation, all task-schedulers
do the same, commonplace EDF. The task states are updated. The
task-schedulers all propose a task to the top-scheduler.

3. Of the proposed tasks, the task with the most immediate deadline is
favored, as long as its task-scheduler has a non-depleted CPU-budget.

6.3 task priority

EDF is a priority scheduling algorithm where the priority is a dynamic prop-
erty.

For this project, locally, at the level of an individual task-scheduler, the
highest-priority task is the task with the most immediate absolute deadline,
just like commonplace EDF.

However, globally, the highest-priority task must also belong to a task-
scheduler that has not depleted its CPU-budget. If the task-scheduler has a
depleted budget, its proposal to the top-scheduler is academic as no matter
what deadline, no task of that task-scheduler will ever be favored. If a task
belongs to a depleted task-scheduler, that is equivalent to the task having

34



the lowest possibly priority. (If all schedulers are depleted the CPU will
idle.)

Note that a depleted scheduler has a zero remaining CPU-budget. If the
budget is non-zero, it is not depleted and its task will be considered, even if
that task requires more than the remaining CPU-budget to terminate. (This
is a possible window for optimization that has not been explored.)

35



7 The task finite state machine

Each individual task belongs to one (and only one) state, always.

┌──────────────┐
│ UNEMPLOYED │<───────────────┐
└──┬───────────┘ │

│ (a) │
v │

┌─────────┐ │
┌──┤ READY │<────────┐ │

(f) │ └────┬────┘ │ (c) │
│ │ │ │
│ │ (b) ┌────┴──────┐ │
│ └────────>│ RUNNING │ │ (e)
│ └──┬─────┬──┘ │
v │ │ (d) ┌───┴────┐

┌───────────┐ │ └──────>│ HOLD │
│ DELAYED │<──────────────┘ └────────┘
└───────────┘ (f)

Sporadic Task Implementation

7.1 transitions

Transitions occur regularly, and at the same time for all tasks, namely when
the global scheduler interrupts execution to re-asses the state of the sys-
tem.

The transitions are:

(a) The task arrives: it is employed. This happens after a semi-random
delay: in practice, the task should arrive sooner rather than later. (The
random delay can be disabled with the -i or --immediate option.)

(b) The task has the most immediate deadline in the system of all tasks
that belong to non-depleted schedulers and is thus passed to the CPU
for execution.
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(c) The task is preempted by another task from a non-depleted task sched-
uler, a task with a more immediate deadline.

(d) The task is completed and is released by the CPU.

(e) The minimum inter-arrival time has passed, so a new task instance can
be released.

(f) Timeout – the absolute deadline of the task is in the past, but the task
still has not completed.

7.2 states

UNEMPLOYED Either of:

• The task has never executed, and has not yet
been placed in the ready queue (where it would
have state READY).

• The task has had at least one instance of it-
self executing (the RUNNING state); it completed
its computation, and has been put on hold (the
HOLD state). However, the time of necessary
holding (due to the sporadic task model) has
transpired, so another, new instance of the task
can indeed be placed in the ready queue – only
this has not happened, yet.

Which one of these situations is at hand is not of
practical or analytical importance, but they illustrate
the cyclic nature of the life of a task in this system.

The reason for this state is to get the sporadic, semi-
random behavior of task arrivals.

Note that an unemployed task has not arrived so it
does not have a pending deadline, and it cannot be
selected for execution.

37



READY The task is queuing. It has been deployed – it has
arrived – and may in part have been executed, only,
if so, it has been preempted – either way, it is not
completed so it waits, queuing. All time spent in this
state is added to the response time of the task.

RUNNING The task is executing: the scheduler that holds the
task has not depleted its CPU-budget, and the task
has the most immediate deadline for all tasks that run
on non-depleted schedulers. When executing, the task
is closing in on the absolute deadline as much as when
it idles in the ready queue. However, contrary to when
idling, the task is also closing in (at the same speed)
on its own termination, at what point it has received
enough CPU time to complete its computation and
terminate successfully.

HOLD The previous task instance has completed, and before
another instance of the same task can arrive, it must
hold until its period is over, in accordance with the
minimal-interarrival, one-instance-at-a-time policy of
the sporadic task model.

DELAYED The task has missed its deadline: the absolute dead-
line is in the past, and the task has not been assigned
the CPU (state RUNNING) for a time that equals or
exceeds the WCET of the task. In this system, a de-
layed task will not ever be completed, nor will any
further instances of that task be released.

8 System description

Terminology: This section is a description of the hierarchical scheduler as
a piece of software. The parameters correspond directly to C++ data types:
in some cases classes, in some cases primitives. Most parameters are part of
the interface and can thus be specified by the user without any changes to
the software required. Only the parameter names are simplified, most often
to single letters; and OO relationships are expressed as parenthesized lists:
this is to make the description more accessible, and, later, to facilitate the
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use of the parameters in formulas. Nonetheless this remains a description of
actual software and is not a model to be verified by formal methods – which,
alas, at best would verify only the model itself.

8.1 the top-scheduler

g is the singular, or root, top-scheduler:

g = (l, p, r, S, a) eq. (1), top_scheduler

parameter name (unit) description

l lifetime ms The system lifetime. This is the
amount of time that the top-scheduler
will execute, from the time of invoca-
tion. As the top-scheduler is the top-
most body of the system, l equals the
system lifetime.

p period ms The global period. At the beginning
of each period the task-schedulers have
their budgets (re)supplied to their in-
dividual, pre-assigned levels.

r rate ms The scheduling rate by which g will
schedule S. At every r, execution
comes to a halt: scheduling is done,
and execution resumes.

S schedulers The set of task schedulers that the top-
scheduler schedules.
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a algorithm The scheduling algorithm that g ap-
plies to S, in order to select what task
to execute (for all s ∈ S). The algo-
rithm updates and maintains the sta-
tuses of all other tasks and schedulers
as well.

8.2 how the time parameters relate

0 < r < p < l eq. (2), relate

If not 0 < r there will be constant preemption and not any task execution at
all.

If not r < p, then at each tick, the budgets of all s ∈ S will have been
resupplied, and what happened before the tick will not influence the selection
of the next s′, as then (and always), every s′ ∈ S (including s) is equally
ready. If so, there will not be any isolation between the critical groups as
that is expressed and implemented as the CPU-budgets of the schedulers. If
the budgets cannot be depleted, they cannot play a role in this system.

If not p < l, there will not be any resupplies of budgets.

8.3 task scheduler

S is the set of task-schedulers.

The task-schedulers are the implementation of the critical groups.

S ̸= ∅ as, unless so, there is not any s ∈ S for g to schedule (or any tasks to
execute).

The set of task schedulers is:

S = {si} = {(mi, bi, Pi,αi)} eq. (3), task_scheduler
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Notation: The subscripts are only given to indicate that the properties
belong to a certain task scheduler. A single task-scheduler s would be fully
described as s = (m, b, P,α).

8.3.1 mi, the maximum best-effort core memory accesses

For each global period (of time p), the software that runs on the best-effort
core must not exceed a certain number of memory accesses – mi – during the
execution of the critical tasks of si.

That way interference from the best-effort core vis-a-vis a specific critical
group can be quantified, and thus bounded. The bound is used in response-
time analysis of the critical tasks on a task-scheduler basis.

8.3.2 bi, the CPU-budget

bi is the budget assigned to si. The time the computer spends executing a
t ∈ Pi will reduce the working budget of si by the same amount of time.
When the working budget is depleted for si, g will not consider si; however,
g will restore the working budget of si to bi at the transitions between global
periods.

bi > 0 as otherwise g will never consider si.

The CPU-budget feature makes it possible to isolate the critical groups from
each other. For each global period, the tasks of si – Pi – cannot delay
any task that belongs to another group by any more than bi, the budget of
si.

8.3.3 αi, the (task) scheduling algorithm

αi is the scheduling algorithm si uses to propose a t ∈ Pi for execution.

In principle, αi can be an altogether different algorithm than the global
scheduling algorithm a. αi can also be different from one task-scheduler to
another. In this project, all task-schedulers do commonplace EDF, while the
top-scheduler do a slightly modified EDF, the most notable addition being
the ruling-out of schedulers that have depleted budgets.
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8.4 Pi, the sporadic task set

Pi = {tj} = {(Cj, Dj, Tj)} eq. (4), sporadic_task_set

Pi ̸= ∅ as otherwise there are not any tasks to schedule.

8.5 the sporadic task model

The sporadic task model is a small-but-important extension to Liu and Lay-
land’s periodic model in which each task has only two parameters: WCET,
and period. [14, pp. 46-61] The sporadic model is different from the periodic
model because it decouples the deadline from the period [16] whereas the
period remains as an upper bound for the deadline and also determines the
frequency of task instance releases.

The sporadic task model of this system does not differ from the sporadic task
model commonly used in real-time scheduling:

tj = (Cj, Dj, Tj) eq. (5), sporadic_task

8.5.1 task parameters

• Cj is the WCET.

• Dj is the deadline, relative to the arrival time.

• Tj is the minimal inter-release time: i.e., there can be at most one
instance of tj for each Tj.

• 0 < Cj ≤ Dj ≤ Tj
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8.5.2 task properties

• the tasks do not share any task-specific resources

• there are not any task-precedence constraints

• there is not any communication between tasks
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9 Schedulability method: response time

One method to ensure schedulability is to assume the worst-case scenario:
i.e., that the best-effort core software produces a maximum number of mem-
ory accesses, at all times, and at the worst times with respect to the critical
tasks completing before their deadlines – while, simultaneously, critical tasks
are released in the most unfavorable way – the way that causes maximum
queuing.

9.1 rj, the worst-case response-time for tj

rj is the worst-case response-time for the task tj: it is the maximum-length
time span from the arrival of tj, to its completion.

The following terms add to the delay of tj. The sum of those, plus Cj, the
WCET of tj, is equal to the worst-case response time:

rj = Qj + oj + ij + Cj eq. (6), response_time

9.1.1 Qj, queuing

Qj is the worst-case time spent queuing for tj. When a task is queuing, it is
in the READY state. The definition of queuing is whenever tj cannot execute,
while some other task not only can, but is. (As a consequence, it is not
considered queuing when all tasks are inactive, as is the case during a global
scheduling interrupt.) There are two (or three) situations when tj can be
queued, which makes up for a total queuing delay formula of:

Qj = Qgj + Q
s
j

eq. (7), queuing
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9.1.2 z, the response time in global periods

The worst-case (largest) number of global periods that can transpire during
the existence of a task is, without rounding:

z = rj
p

eq. (8), periods

9.1.3 Qgj, group deadline queuing

Here, tj is queuing because it has a less immediate deadline than another task
in the same group – a task that belongs to the same scheduler as tj.

Note that just about any task can have tj preempted and/or queued at some
point: a higher priority is equivalent to a more immediate absolute deadline.
This is a dynamic property that does not imply Di ≤ Dj for a higher priority
task ti: if ti was released before tj, the absolute deadline of ti may still
be more immediate than that of tj. The set hp(tj) is all tasks that at some
point can have a higher priority than tj.

The worst-case system queuing is:

Qgj =
∑

{tj,tk}⊆Pi,tk∈hp(tj)

⌈
rj
Tk

⌉
Ck

eq. (9), group_queuing

Note: hp(tj) is effectually all tasks except for tj itself! Because of that,
this schedulability method is reduced to that of a fixed-priority system, only
worse, as here, all tasks would have equal priority. While there exist methods
to compute the response time for individual tasks under EDF, those are
complicated and typically not worth the effort as long as the purpose is
to compute general schedulability. Still, the formulas here are included to
illuminate the mechanics of this implementation.

9.1.4 Qsj, cross-group (system) deadline queuing

The task tj of the scheduler si can be delayed by a higher-priority task that
belongs to another scheduler. In the worst case, all other schedulers will
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spend all of their budgets before tj can execute:

Qsj = (⌈z⌉ + 1)(p – bi) eq. (10), system_queuing

9.1.5 depletion queuing

During depletion queuing, tj cannot execute because its scheduler si has
depleted its CPU-budget. Fortunately, the worst-case time tj can be delayed
for this reason is already included in Qsj.

9.1.6 oj, the scheduling overhead

The worst-case time required to do a single execution of global scheduling is
denoted o (just o, without an index). It is the the scheduling overhead.

As the top-scheduler controls all of the task-schedulers, o includes task-
scheduling overhead as well.

oj is the worst-case scheduling overhead during a single execution of any one
instance of tj.

Because scheduling occurs once every global tick (r), the worst-case delay
is:

oj =
⌊
rj
r

⌋
o

eq. (11), schedulability_overhead

9.2 ij, interference from the best-effort core

Interference from the best-effort core is due to best-effort core software con-
tention for the shared DRAM and the shared memory bus.

For each period p, with respect to the critical tasks of scheduler si, the worst-
case number of memory accesses that can arise from the best-effort core is
bounded by mi.
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The worst-case interference for any task is a situation in which the best-effort
core makes all its allowed memory accesses during the employment of that
task, for all global periods during which that task instance exists.

The assumption is that during a best-effort memory fetch, the critical core
task cannot do anything, but idles. (This assumption is probably very pes-
simistic.)

If the worst-case response time for a DRAM access (for either core) is 58.5
nanoseconds [3], then the worst-case memory interference from the best-effort
core is:

ij = ⌈z⌉mi58.5 ns eq. (12), interference
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10 Schedulability method: resource server

Another method to guarantee schedulability is to consider an individual task-
scheduler a resource server. The resource provided is CPU-time; it is con-
sumed by the tasks that belong to that particular scheduler.

This method involves less advanced computation than the response-time
method, because here, there is not any reliance on the dynamic set of tasks
with higher priorities than the task whose response time is calculated. (An-
other implementation of this idea is described in [18, pp. 301-324]. There,
only one processor is considered, and the notation is different.)

This method relies on two functions: a supply bound function, sbf, and a
demand bound function, dbf.

Both functions have two parameters. ∆θ is the same for both: it is the length
of the time interval for which supply or demand is computed. This interval
can occur anywhere in time, and during that interval the system executing
can be in any sound state.

The other parameter, for sbf and dbf, are the supplier and demander them-
selves, respectively. If the functions are used to compare supply and demand,
they must be used pair-wise: if si is the argument to sbf, Pi is the argument
to dbf. Indeed, the tasks of Pi are the only tasks that can demand CPU-time
supplied by si.

sbf(∆θ, si) is the minimum possible CPU-time supplied by si during any
time period of length ∆θ.

Correspondingly, sbf(∆θ, si) is the maximum possible CPU-time demanded.

The worst-case scenario is: the maximum possibly demanded vs. the mini-
mum possibly supplied.

For any task-scheduler, schedulability is guaranteed if the maximum demand
for any particular interval is below or equal to the minimum supply for all
interval of the same length.

The system is schedulable if all task-schedulers are.
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10.1 interval length

If the interval starts at θ1 and ends at θ2 the length of the interval is:

I = ∆θ = θ2 – θ1 eq. (13), interval

10.2 sbf

During each complete global period p, the task-scheduler si supplies exactly
bi of CPU-time for its tasks.

The number of complete periods is:

w =
⌊
I
p

⌋
– 1

eq. (14), supply_complete_periods

The CPU-time supplied by si for those periods is:

Bi = wbi eq. (15),
supply_time_complete_periods

Moreover, there can be zero, one or two incomplete periods that are part of
the interval. If so, they exist before and/or after the consecutive w complete
periods.

The incomplete periods have the total length:

R = I – wp eq. (16),
supply_length_incomplete_periods

The worst case, when the task-scheduler supplies the least, is when there are
two incomplete periods of the same length. Then, it is the most likely that
the task-scheduler supplies all of its CPU-budgets, both times, during the
stretches of the incomplete periods that are outside the interval.
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Both time spans that belong to incomplete periods outside of the interval
has length:

U = p – R
2

eq. (17),
supply_length_incomplete_outside

If U is longer than bi, the minimum supply case for si is when all of bi is
supplied during U. However, if bi exceeds U, the part of bi that exceeds U is
supplied:

βi = 2max(0, bi – U) eq. (18), supply_incomplete_periods

However, because of the best-effort core interference, the actual CPU-time
supplied is less.

As seen, there are w complete periods in each interval. In addition, there can
be two more periods that are incomplete: one at each side of the consecutive,
complete periods. In all, there can be a maximum of (w + 2) periods. The
task-scheduler si allows mi best-effort core LLC misses for each period, and
for the entire interval: (w+2)mi. If the data and assumptions in [section 9.2,
page 48] are reused, the total supply reduction is:

ρ = (w + 2)mi58.5 ns eq. (19), supply_reduction

All in all, the minimum supply from si to all tasks t ∈ Pi is:

sbf(si, I) = Bi + βi – ρ eq. (20), supply
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10.3 dbf

The number of complete periods of tj that exists within the interval is:

f =
⌊
I
Tj

⌋ eq. (21), demand_complete_periods

Once the complete periods have been accounted for, it is possible that an in-
complete period remains, during which tj can demand CPU-time. However,
it cannot request more than either the computation time of the task, or the
entire incomplete period:

h = min(I – fTj, Cj) eq. (22), demand_incomplete_period

Note that this is the opposite to the supply function. There, what is desired
is the minimum supply possible, so the spill-over global period is divided into
two. Here, the aim is maximum demand so it is assumed the spill-over task
period is not spread over two periods.

The maximum demand made by the task is:

dbf(tj, I) = fCj + h eq. (23), demand_task

The maximum demand made by Pi is the sum of the demands made by all
t ∈ Pi:

dbf(Pi, I) =
∑

tj∈Pi
dbf(tj, I) eq. (24), demand_group
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11 Experiments

This project carries out several experiments. But there can be many other
experiments as well, that are not necessarily less interesting. Because of a
building-block approach, it is quick to set up and execute an experiment.
Even most data is collected automatically. Rather, the challenge is to grasp
the meaning of certain combinations, as well as to correctly analyze the
results.

11.1 building blocks

All experiments involve the same technology and the same tools, but they
are employed in different combinations, and with different parameter val-
ues.

The building blocks are:

• hs is the hierarchical scheduler. It is specifically developed for this
project. hs can be invoked in different ways. Apart from executing
task systems, hs can also output the global tick trace, which can be
included in an experiment, if desired.

• taskset(1) is used to isolate a process to a specific hardware CPU, or
core. How to isolate a core from most other processes is described in
[section 5.4.2, page 31].

• stress(1) is used to generate memory traffic. It can be used on any
and all cores. For most experiments, stress is used to simulate in-
terfering software: on the best-effort core, stress is used to simulate
arbitrary non-critical software.

On the critical core, stress is used simulate processor and memory
usage of the software that would be executed by the tasks that are
scheduled by hs. Unless hs is told to fork processes, the tasks that
hs schedules do not utilize computer resources to the extent that real
software would.

Note: While stress can be made to behave virtually like any piece of
software or software set – and this makes it useful in simulations – it
is just as easy to run ordinary Linux software, on either core, to attain
natural contention for computer resources. Simulation may be useful to
create certain scenarios, that would otherwise require extensive setups
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of ordinary software, but most scenarios are just as easily attained
without simulation. What to do depends on the nature of the experient:
stress can be used to show that something actually can happen, under
rare-but-possible conditions. On the other hand, ordinary software
can be used to produce a realistic setting, say when the aim of the
experiment is to illustrate every-day system use.

Warning: stress does not behave like a normal piece of software. In-
stead, stress can be made to congest the entire memory, at what point
the computer is nonresponsive. After all memory has been congested,
it is not enough to kill the stress processes to remedy the situation.
While the memory is thus released, any running application still needs
to reassert its footprint before it can resume proper work and respond
to user IO. This usually takes a couple of seconds for the application
immediately grasped for – but for dormant processes, the effect can re-
main hidden, and appear unexpectedly. This makes stress even less
reliable to use in experiments as the memory state of one experiment
instance can linger on to affect other, where perhaps stress is not even
used.

• perf_event_open is used to measure the memory usage. It does so by
booking LLC misses, as they imply DRAM fetches and memory-bus
traffic. perf_event_open can be used on a single process, on a set of
processes, or on any and all cores, collectively. If need be, there can be
parallel instances with different focus. Here, perf_event_open is used
by hs so that at the end of its execution it outputs the total number
of memory accesses that stem from the best-effort core.

• perf_event_open is also the way that hs monitors the best-effort core,
to decide weather the software that runs there is supposed to be freezed,
thawed, or left alone. If hs decides to change the status of the best-
effort core, this is effectuated by means of a Linux cgroup: such a
group must be initialized before hs is run.

• To measure the execution time of a process, time(1) is used. This
tool can be used to measure performance downgrade by clocking the
completion time of identical commands, only in different setups.

There is some material appended to this document – [section D, page 135]
– to facilitate interaction with not only hs but the associated tools and
entities (including the best-effort core) as well as the setup and execution of
experiments.
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11.2 design

An experiment can be anything that employs hs with a task system and
any combination of the mentioned tools. This checklist how to arrange and
execute an experiment should cover most cases:

1. the setup: what happens on the best-effort core, and what happens on
the critical core (except for hs), while the experiment runs

2. the hs task system

3. a time-interval how long the experiment will run – recall that a hs
system has a lifetime parameter, which can fill this purpose

4. what processes are investigated with time and perf_event_open

5. the experiment should also have a verbalized rationale – “we do this
because...” (implementation details of an experiment can contradict
the purpose of the experiment: if deemed acceptable still, the problem
should be mentioned as well as what is exciting about the experiment)

6. results (after the experiment is done)

7. a possible post-processing of the results by some number-crunching tool

8. conclusion

11.3 zsh wrappers

To manage the experiments, and make sure they stay the same for different
input values (e.g., task systems), zsh functions are used to wrap the specific
commands that make up the experiments.

This method is one of clearly defined functions which are reproducible, highly
automatized, and easily re-executed after say a change to the involved soft-
ware.

There is one function for each experiment. Such a function can, for example,
execute several input task systems, while booking their results, and later
comparing them.

The experiment functions: [section D.c, page 140]
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12 Contention experiment

zsh function: run-contention-experiment [section D.c, page 140]

This experiment attempts to show that processing, even though separated on
different cores, still affects, and is affected by, simultaneous processing.

12.1 setup

The experiment consists of compiling some 50 Elisp files on the critical core,
in order to measure how long it takes to complete compilation for differ-
ent setups. The changes involve the critical core as well as the best-effort
core.

In parallel with compilation, hs runs, likewise exclusively on the critical core.
The purpose of the compilation is to simulate the memory accesses and the
CPU strain that the task software of hs would produce, if indeed they carried
real software and not mock-offs.

On the best-effort core, for certain setups of this experiment, mplayer2(1)
runs: whenever so, it displays a three gigabyte mp4 file. To display such a
file on the experiment computer is deemed expensive, but not excessively or
unrealistically so.

In addition, stress(1) sometimes run on the critical core to simulate the
resource demand and consumption of would-be critical software.

The results are, in nanoseconds:

* (compilation time without hs)
29664764093
* with hs:
24764116386
* with hs and the best-effort media player:
24709304113
* with hs and stress:
50052877386
* with hs, stress and the BE media player:
57734584696
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12.2 conclusion

Intuitively, the more contention, the more time is needed to complete the
compilation. Contrary to this, in this experiment, neither hs nor the media
player influence the speed of the parallel compilation process.
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13 Best-effort core memory experiment

zsh function: run-memory-experiment [section D.c, page 140]

The contention experiment shows that the critical core is affected by best-
effort core activity: [section 12, page 56] Now, the intention is to show that
influence goes both ways: in particular, how the memory budgets of task
systems affect the best-effort core whenever hs is instructed to, whenever
appropriate, either freeze or thaw it.

The influence is quantified as the number of memory accesses that originates
from the best-effort core during executions of task systems with different
memory budgets. The best-effort core executes the media player.

Here, hs is invoked with --memory-budget-add, which add its argument to
all memory budgets. Thus, the same system is is executed repeatedly, only
with different memory-budgets. At termination, the number of best-effort
core memory accesses are output.

13.1 the importance of this experiment: delays and
overheads

This project describes a problem, and looking at the big picture, the imple-
mentation attempts to solve it by controlling the number of best-effort core
memory accesses. The degree of success is possible to quantify by executing
this very experiment. Likewise, later on, the experiment in [section 16, page
74] will quantify the “small picture” success, which directly relates to the
real-time deadlines of the involved tasks.

In this experiment, the interpretation of the result is: if x best-effort core
memory accesses are allowed for an execution of hs, and y are those actually
performed, then the difference y – x should be as close to zero as possible
(and not less than zero, for a busy system).

A perfect execution, where x = y, is unrealistic for several reasons, some of
which appear at every global tick:

• the hs C++ scheduling and freeze/thaw overhead

• the hs inexact tick, discussed in [section 5.2, page 25]

• the PMC data fetch overhead
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• the polled EDF, discussed in [section 4.3, page 22], and otherwise the
userspace implementation, notably the signal control of forked pro-
cesses

In addition, some unpredictable factors appear at most once for every task
scheduler and global period:

• cgroup freezing and thawing overhead (an experiment indicates that
this overhead is all but nonexistent)

While all those factors do reduce the quality of the outcome, their respective
weights are at this point uncertain, as is weather they actually do influence
enough to qualify as scapegoats, should the experiment outcome be unsatis-
factory.

13.2 systems

The experiment includes two systems. One has a single task scheduler; the
other has two. The reason to do the experiment twice is to see if the fallout
is responsive to setup details, in what case the causality should be further
explored. Both systems have full budgets, with implicit deadlines (Di = Ti)
for all tasks, and less than full utilization:

UT =
∑

ti∈T
Ci
Ti

≤ 1

The experiment results are showed below in two figures; also, in [section A,
page 82] are the complete tables of data from which the figures are gener-
ated.

13.2.1 one-scheduler system: base-faculty-1

System:

Global scheduling rate: 1
Global period : 120
Global lifetime: 1000
Global scheduling algorithm: EDF

Critical level: 1
Budget: 120

58



Max BE accesses: 1
Task scheduling algorithm: EDF
t1 = (40, 120, 120) faculty(7)
t2 = (40, 120, 120) faculty(7)

Fallout:

13.2.2 two-scheduler system: base-faculty-2

System:

Global scheduling rate: 1
Global period : 150
Global lifetime: 1000
Global scheduling algorithm: EDF

Critical level: 1
Budget: 60
Max BE accesses: 10
Task scheduling algorithm: EDF
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t1 = (60, 150, 150) faculty(7)

Critical level: 2
Budget: 60
Max BE accesses: 1
Task scheduling algorithm: EDF
t2 = (60, 150, 150) faculty(7)

Fallout:
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13.3 conclusion

The correspondence between memory budgets and best-effort core memory
accesses should be: the bigger the budgets, the more accesses – up and until
where budgets are not depleted because the best-effort core software does
not generate that much memory traffic. (What is beyond that point is not
included in the above plots.) The linear tendency in both plots shows that
in general, memory throttling works as expected. However, the high error
percentages are discouraging. In a real-time system, the specific, worst case
has to be considered, not the general tendency.
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14 hs task systems experiment

zsh function: run-task-system-experiment [section D.c, page 140]

All instances of this experiment are of the same form. Only one input pa-
rameter differs: the hs task system. Everything else is the same to facilitate
comparisons of the fallout data: if the setup does not change, different results
are a consequence of different task systems.

14.1 setup

On the critical core, hs runs, as well as the Elisp compilation, which is also
timed. On the best-effort core, the media player runs

What is different from the first experiment is the behavior of hs: it will now
freeze, and thaw, the best-effort core. What happens is a function of how
many memory fetches the best-effort core produces, as well as the dynamic
state of the hs task system.

The only way to affect the results is thus to change the parameter values of
the task system – and those of the scheduler itself (those parameters are in
the same task system file).

The method is to execute several task systems, with widely different param-
eter values at key points, and then examine if and how that affects the out-
come. To this end, each system is given a personality name which describes
what property is emphasized: e.g., one system is called short_rate, another
small_memory_budgets, and so on. There can be many such personalities
and combinations thereof: only a small subset is tested here.

Because there are so many parameters, it is a challenge to assign neutral
values that will not affect the outcome and thus neither morph or hide the
part of the outcome that is a consequence of the spelled-out personality. To
circumvent this problem, the systems have identical values except for their
defining traits.

14.2 what is a task system?

A task system contains parameter values for each task, according to the
sporadic task model: for each task there is a WCET, a deadline, and a
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minimum-interarrival time, or period, as described in [section 8.5, page 43].
But there is more than tasks to a task system. The system definition also
specifies the parameters values for each task scheduler, or critical group: e.g.,
the memory budget that hs uses to freeze and thaw the best-effort core. Also,
a system definition contains parameter values of the top-most scheduler: e.g.,
the scheduling rate and the total system lifetime. So technically, a more exact
phrasing would be a multicore task/scheduler system. Here, “task system”
is used for simplicity.

An example task system can be found in [section D.a, page 135].

14.3 simulation issues

This experiment is the first step toward an experiment that is more realistic,
and less simulated. Although there is still heavy reliance on simulation,
simulation is implemented as well-defined puzzle pieces with clear purposes.
The thought is that they can be easily replaced, one by one, further down
the line.

The issues are:

• hs does real scheduling, only what it schedules is not real software in
the sense that it actually does anything useful (it can be hard-coded
to do useful things, but as for now it is not).

• Although the compilation is an example of real, useful software in exe-
cution, it actually simulates all the instances of would-be critical-task
software.

• The best-effort interference is measured in terms of how much it can
delay the critical-core Elisp compilation, even though hs is in control of
the best-effort software. That is, interference is not measured in terms
of the real-time parameters – the deadlines – that belongs to the hs
tasks.

14.4 the result data

After the completion of an instance of this experiment, there are four newly
created files which contain all parts of the result. Those files are in a directory
that bears the same name as the executed task system.
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The result is organized like this:

file name description

hs_output.log The hs run: all the task state changes, as well as
any task software output. It is the execution trace
of the task system as scheduled, and executed, by
hs. Also, this file contains the number of best-effort
core memory accesses during the system run.

lisp.log The time required to compile the Elisp source files.

tick_times.log The time readings in nanoseconds for every global
tick. Details and examples are in [section 5.2, page
25].

stats.log This file contains the offset from the specified global
tick rate, for every tick. It is computed of the
tick_times.log file; likewise, it is discussed else-
where.

There are also the files stats.txt and BE.txt that are convenience parsings
of data already available in the above files.

14.5 systems and results

The first system is base. It is a basic system that the other systems model,
save for some characteristic trait changed. The purpose is to examine how
any step away from base makes – or does not make – its way into the result
data, and then analyze how this comes to happen.

14.5.1 base

• The system:

Global scheduling rate: 1
Global period : 10
Global lifetime: 20000
Global scheduling algorithm: EDF
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Critical level: 1
Budget: 5
Max BE accesses: 1000
Task scheduling algorithm: EDF
t1 = (5, 10, 10) helloworld()

Critical level: 2
Budget: 5
Max BE accesses: 7050
Task scheduling algorithm: EDF
t2 = (5, 10, 10) helloworld()

• Lisp compilation time, in nanoseconds:

25395474282

• Tick stats:

readings: 19999
mean: 2.000000
variance: 23467123592.000000
standard deviation: 153189.828618
min: -987988
max: 9296281

• Best-effort core memory accesses:

41569979

14.5.2 long-ticks

The long-ticks system has a much slower global scheduling rate than the
base system. This affects presumably all aspects of any system execution
because it is only at the scheduling interrupts that one task can be replaced
by another as the one executed by the CPU; moreover, it is only at the
scheduling interrupts that hs freezes or thaws the best-effort core.

• The system:

Global scheduling rate: 5
Global period : 10
Global lifetime: 20000
Global scheduling algorithm: EDF
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Critical level: 1
Budget: 5
Max BE accesses: 1000
Task scheduling algorithm: EDF
t1 = (5, 10, 10) helloworld()

Critical level: 2
Budget: 5
Max BE accesses: 7050
Task scheduling algorithm: EDF
t2 = (5, 10, 10) helloworld()

• Lisp compilation time, in nanoseconds:

24976418787

• Tick stats:

readings: 3999
mean: 14.000000
variance: 599515787400.000000
standard deviation: 774284.048267
min: -4968152
max: 8919367

• Best-effort core memory accesses:

48739762

14.5.3 long-period

The long-period system has a much longer global period than the base
system.

• The system:

Global scheduling rate: 1
Global period : 30
Global lifetime: 20000
Global scheduling algorithm: EDF

Critical level: 1
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Budget: 5
Max BE accesses: 1000
Task scheduling algorithm: EDF
t1 = (5, 10, 10) helloworld()

Critical level: 2
Budget: 5
Max BE accesses: 7050
Task scheduling algorithm: EDF
t2 = (5, 10, 10) helloworld()

• Lisp compilation time, in nanoseconds:

20692567908

• Tick stats:

readings: 19999
mean: 2.000000
variance: 40455151873.000000
standard deviation: 201134.661043
min: -988825
max: 5962338

• Best-effort core LLC misses:

56681084

14.6 conclusion

The different outcomes of this experiment show that interference from the
best-effort core can be throttled as a function of the memory access profile
of the best-effort core software in combination with what happens on the
critical core, down to the individual task that is currently executed.
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15 Linux processes experiment

zsh function: run-linux-process-experiment [section D.c, page 140]

This experiment is similar to the previous one – [section 14, page 63] – with
the huge exception that hs does not run mock software anymore, instead, it
spawns and schedules ordinary Linux processes.

The purpose of the experiment is to show that real software is as much
susceptible to interference as the software measured in the previous simula-
tion.

At best, the previously used hard-coded task software provides a simulation
of an actual system. Here, that is replaced by Linux processes. The processes
are scheduled exactly like the task software, only – were it fits – the processes
are suspended and resumed from hs, by means of kill(2) signals. Those are
sent on the basis of process group IDs (PGIDs), so that processes spawned
down the ladder will be controlled by hs as well.

15.1 advantages

• Because real software is being executed it puts a definite end to every-
thing simulated or artificial about this project.

• Because the processes are now separated from hs, they can be moni-
tored individually, isolated from each other as well as from hs. Recall
that in the previous experiment, there was a compilation process that
run in parallel with hs. The slowdown in compilation due to inter-
ference from the best-effort core was a measure of how, collectively,
critical-core software was affected. Here, with real processes, the pro-
cesses are not representing anything but themselves, so any slowdown
detected (for whatever reason) is actual slowdown and no mere indica-
tion of such a tendency.

• Because the processes are ordinary Linux processes, when they are re-
sumed (after being suspended), they take on where they were pre-
empted. That means total execution wall-clock time will not only be
prolonged by the the best-effort core interference, it will to a much
higher degree depend on the associated real-time parameters of the
software, because those determine how hs will schedule the processes.

68



15.2 disadvantages

• If a system employs lengthy background processes, but still is desired to
be highly responsive with frequent context switches, the task parame-
ters of the sporadic task model must be reinterpreted. The C parameter
for WCET, as well as the other parameters, no longer express times for
an entire process, but rather the burst patterns in which it will execute
until completion. It can be thought of as a version of the multiframe
model [17, pp. 635-645]; however, it does not come with fixed frames in
terms of exactly what part of the software is being executed. (Actually,
a hard-framed model would be easy to implement with the hard-coded
task software: a static C++ variable – as in persistent, not class – to
hold the current frame, and then a branch is all it takes.)

• Although slowdown is measured with actual software – not some repre-
sentation thereof – slowdown is not measured in terms of the real-time
parameters associated with the software. This further contrasts with
the sporadic task model, in which everything is fine as long as all tasks
complete before their deadlines. Even if deadlines are reinterpreted as
bounds of bursts of processes in execution, this experiment still does
not examine how the context in which processes execute either fails to
interfere enough, or actually breaks task deadlines.

15.3 systems and results

15.3.1 base-p

The base-p system consists of real Linux processes. One is an infinite loop
outputting a string; the other compiles the by now familiar Elisp files. How-
ever, compilation in this experiment is not equivalent to what happened in
the previous experiment, with the base system – then, there was a compila-
tion process that ran interwovenly with hs on the critical core; here, compi-
lation is critical software that hs schedules. Thus, the compilation process is
subject to its sporadic task representation and the values it holds. The by far
biggest consequence of this is that the result data cannot be interpreted in
terms of interference alone, although interference has not decreased. Rather,
a much bigger factor is competition on hs from other critical tasks, and the
task parameter values of the process itself.

The result for base-p:
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• The system:

Global scheduling rate: 1
Global period : 30
Global lifetime: 30000
Global scheduling algorithm: EDF

Critical level: 1
Budget: 4
Max BE accesses: 10000
Task scheduling algorithm: EDF
t1 = (1, 4, 4) ./compile_lisp()

Critical level: 2
Budget: 14
Max BE accesses: 7050
Task scheduling algorithm: EDF
t2 = (2, 4, 4) ./forever()

• Lisp compilation time, in nanoseconds:

80020028235

• Tick stats:

readings: 29999
mean: 2.000000
variance: 8287884602205.000000
standard deviation: 2878868.632329
min: -987429
max: 43918558

• Best-effort core LLC misses:

60420

15.3.2 base-p-no-memory-budget

These are the results for an identical system, besides having a virtually nonex-
istent memory budget.

• The system:

Global scheduling rate: 1
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Global period : 30
Global lifetime: 30000
Global scheduling algorithm: EDF

Critical level: 1
Budget: 4
Max BE accesses: 1
Task scheduling algorithm: EDF
t1 = (1, 4, 4) ./compile_lisp()

Critical level: 2
Budget: 14
Max BE accesses: 1
Task scheduling algorithm: EDF
t2 = (2, 4, 4) ./forever()

• Lisp compilation time, in nanoseconds:

43186420057

• Tick stats:

readings: 29969
mean: 2.000000
variance: 9936160858837.000000
standard deviation: 3152167.644469
min: -987429
max: 44845212

• Best-effort core LLC misses:

30284774

15.4 conclusion

While the results of this experiment do enlighten the inefficiency of the
method, equally revealing was the process of setting up the experiment.

The sporadic task model is not suited for continuous processes. In order to
have an interactive system, the computation times (the WCET parameter
values) must be small. On the other hand, the deadlines cannot be too
tight less you risk having delayed processes (or delayed parts of processes).
Yet, on the third hand, if deadlines are wide, so are periods, which means

71



the processes will not get back to action right away but must idle until the
period ends. This is sometimes acceptable, even welcome, as long as other
processes can execute to fill the gap; if not, it is a waste of resources.

Also, remember that the task model parameters are not alone in defining a
system: there are also the global scheduler parameters, and those of every
task schedulers. All in all, it is a jungle just to execute a program and have
it complete within a reasonable amount of time.

For this reason, there are only two systems included in this experiment, to
show the mechanics.

Of course, there is no ruling out that a system implemented this way could be
functional, but that would have to involve experimentation and evaluation
as to what to assign each end every parameter. And that is not a good idea:
the parameters should reflect reality, or at the least intuition, and pretty
much instantly so – they are not to be tweaked just so a simple program can
be executed.
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16 Real real-time: audio experiment

zsh function: run-audio-experiment [section D.c, page 140]

This experiments puts it all together. Just like the previous experiment, it
uses real software: hs schedules Linux processes.

But unlike the previous experiment, all tasks are expected to terminate
within their deadline frames, as expressed by their sporadic task representa-
tions.

This time, nothing is measured. Instead, everything is done in terms of the
real-time task system, and the associated software.

Furthermore, the process that is examined executes software that measures
an external, physical property: the sound level. This is measured with a
microphone plugged into the computer. (To make the system even more
interesting, it can be augmented with all sorts of gadgets: an USB ther-
mometer, for starters.)

The audio process executes a script that logs the sound level by appending
it to a file:

#! /bin/zsh

# use once:
#
# a-level t
#
# continous: invoke with signal USR1;
# terminate with C-c C-c
#
# a-level
# kill -s USR1 PID

# should be faster than 300 ms
do-a-level () {

(($#)) || (($+AUDIO_OUTPUT)) || set /dev/stdout
rec --null stat trim 0 0.1 2>&1 | \

grep 'Maximum amplitude' | \
cut -d' ' -f 7 >> $1

}
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trap 'do-a-level' USR1

(($+1)) && do-a-level || while ((1)) {}

As seen, that script is not optimized but uses a combination of commonly-
used utilities.

The script is a server: it idles until it receives an USR1 signal, which triggers
the function that reads and stores the sound level. This scheme makes it
unnecessary to create a new process for every instance released.

The rationale of this experiment is that if realistic real-time parameter values
are assigned the sporadic task representation of the process that executes the
audio script, then this system can be asserted not in terms of increased mem-
ory/CPU contention, but instead: failure is whenever the absolute deadline
of the audio task is in the past, while the task still has not booked the audio
level.

If such a failure is deducted to be the result of best-effort core memory
contention, it will be attempted to nullify that influence in an execution run
where hs throttles the best-effort core. If this changes the outcome, then it
has been showed that this project assesses a real problem that it is able to
solve as well.

16.1 system

The strategy is to create a system that for a virtually unloaded computer
will execute successfully: it will not suffer a single deadline miss. However,
the margin of error should be the slimmest possible.

That way, if the same system thereafter executes in parallel with best-effort
core activity, the scale will tip and interference will be detectable in the form
of missed deadlines.

The third step is to execute the system anew, again along with interference,
only this time with throttling enabled, and examine if that counteracts the
interference, and has the system execute successfully once again, just as if
the interference had not been there.

The system is:

Global scheduling rate: 200
Global period : 800
Global lifetime: 10000

74



Global scheduling algorithm: EDF

Critical level: 1
Budget: 400
Max BE accesses: 1
Task scheduling algorithm: EDF
t1 = (400, 800, 800) ./a-level()

Critical level: 2
Budget: 400
Max BE accesses: 1
Task scheduling algorithm: EDF
t2 = (400, 800, 800) ./forever()

16.2 execution

In order to understand in what way a system is executed and how it is
influenced by activity on the best-effort core, a framework of tmux(1) panes
is used. The screenshot below shows this – only the colors have been inverted,
to facilitate reading on paper.

In the comic-book reading-order – left-to-right and top-to-bottom – the panes
are:

• The IO of hs, and that which hs schedules (be it the hard-coded task-
software or, as here, Linux processes).

• The best-effort core policy: no BE means there is not any activity on
the best-effort core; tamed BE means there is activity on the best-effort
core but hs is instructed to throttle it; and, wild BE means that there
is activity on the best-effort core, but it is never throttled.

The parenthesis next to the best-effort core policy shows the system
execution number. In order not to interpretate uncommon events as
recurring, it is beneficial to execute the same system several times,
under the same circumstances.

• The next pane shows the state of the best-effort core: FROZEN, or
THAWED. Here, a couple of PIDs are sometimes shown: those are the
PIDs of the processes that are frozen, whenever the best-effort core is.
There is only room to show three PIDs: if there are more processes
on the best-effort core, they are treated the same as those of the PIDs
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mentioned.

• The number of signals sent to the audio task during the no BE run(s).
If there are several iterations this number is the sum of all signals sent
during past executions plus the current, so far.

• The number of outputted audio levels during the no BE phase, so far.

• Ditto tamed BE (two consecutive panes).

• Ditto wild BE.

• The processes on the best-effort core: the data shown is core, PID, and
command. (1 is the best-effort core.)

Note: In the course of carrying out this experiment, it was discovered that
the global preemption rate cannot be set too low when scheduling real pro-
cesses. If so, presumably, the overhead handling processes – interrupting and
otherwise controlling them through signals – will hinder actual software exe-
cution. All but instantly, that will result in missed deadlines. This situation
can be remedied without changing any other parameter value save for the
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rate, which must be increased.

16.3 ideal fallout

A perfect fallout for this experiment would be:

• For a system that is schedulable, and executed without any best-effort
core memory contention, the aim should be set that if there are s signals
sent, then there should be o = s audio level outputs.

• Keeping the same system, but adding contention at the time of execu-
tion (contention which nonetheless can be throttled), then if there are
s′ signals, there should still be o′ = s′ outputs. The assumption is that
the throttling mechanism is configured so it can, if necessary, put the
best-effort core entirely out of business.

• Keeping the same system and the same (severe) contention, only this
time with throttling disenabled, then the number of outputted audio
levels o′′ should be considerable smaller than o and o′.

16.4 conclusion

This experiment shows that hs can control the best-effort so that some critical
tasks (though very few) will complete before their deadlines in spite of best-
effort interference, which, without the hs throttle, would not have been the
case.

What is disappointing is the lack of precision. It appears as though hs can
barely remedy a dysfunctional overall state, while not sophisticated by far to
tweak or improve a functional system with any granularity to it.

It is telling that if stress is substituted for a piece of normal software – e.g.,
the media player, which has a small footprint compared to the entire memory
space available – there are not not any deadlines misses due to memory
contention, or, if occurring, they are never remedied by throttling.

Another thing disappointing is the amount of deadline misses even without
any interference. A likely reason is that the audio process has an execution
time that varies too much so that often the WCET do not reflect reality.

However, it is clear that this experiment fails not because of shortcomings
in hs and/or the wider architecture, but already due to the inability to
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present the critical core with best-effort core interference that in a realistic
and sensible way affects the performance of the critical-core software.

Nevertheless, it is even more clear that hs is incapable of stopping stress
from breaking the entire system: because hs is itself suspectible to best-effort
core interference, the throttling mechanism reverts to a dysfunctional state
along with the rest of the system as all memory becomes unavailable.
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17 Conclusion

The implementation process showed that a hierarchical scheduler is suited
to host a mixed criticality system. Here, critical groups correspond one-to-
one to the task schedulers: because of its very composition, the hierarchical
scheduler provides isolation between critical groups.

Because a hierarchical scheduler is modular by definition, and here serves
as a system host, it was desired to use a fast, general-purpose, and object-
oriented langauge. C++ worked well: the implementation process never ran
into any obstacles that were perceived as insurmountable.

Also, the many tools used in this project, all of them available on a common
Linux system, worked as intended, and for the most part without compli-
cations. Among the tools and technologies used were the GRUB configura-
tion to isolate the cores, then taskset to steer processes to the best-effort
core; moreover, there was a cgroup to control the best-effort core software;
perf_event_open to poll the number of best-effort core LLC misses; and,
tmux and zsh to make an interface to automatize experiments.

Last, the idea to specify task systems in text files that were parsed by hs
at runtime proved powerful, not the least in experiments that required fast
employment of different systems. It could all be accounted for, and autom-
atized.

Regretably, somewhere along the way, the sum of the project became less
than the sum of its parts. While hs can reduce the number of best-effort
core memory accesses, it fails to do so with sufficient precision, as is evident
by the memory experiment.

At this point, there is not any theory as to what part of the system is the
weakest link of the chain. It is not even clear if the lack of precision is the
consequence of one or a few such parts, or the overall architecture, and, if
so, at what level(s).

Moreover, there is a worse, even fatal system exposure, which nonetheless is
more satisfying because the reason is known: because hs is itself suspectible
to best-effort core interference, in face of massive (but possible) best-effort
core memory traffic, the throttling mechanism – a part of hs – reverts to a
dysfunctional state along with hs and the rest of the system, as all memory
becomes unavailable.

Here, I should be noted that the relative success of the memory experiment
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is achieved in the face of moderate best-effort contention – most likely, it
would not work at all if exposed to the same interference as the audio exper-
iment.

Note: Some of the experiments that were carried out in the course of this
project are not mentioned here. The reason is that those experiments, while
not exactly failing, did not offer any key insights that are not conveyed by
subsequent experiments.
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A Appendix A: Memory experiment fallout

Note: If and whenever the tables above are spotwise incomplete, that is
because a failed hard real-time task system has made hs exit preemptly,
without a result to output. Correspondingly, the digits actually outputted
are all of systems whose tasks completed before or at their deadlines, without
fail.
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A.a base-faculty-1

supposed actual error ratio
90009 569553 0.841966
180009 637292 0.717541
270009 785984 0.65647
360009 1346240 0.732582
450009 1113195 0.59575
540009 1214229 0.555266
630009 1240293 0.492048
720009 1338046 0.461895
810009 1497965 0.45926
900009 1508547 0.403393
990009 1593194 0.378601
1080009 1713363 0.369655
1170009 1996471 0.413961
1260009 1931254 0.347569
1350009 1973170 0.315817
1440009 2003326 0.281191
1530009 2215148 0.309297
1620009 2310808 0.298943
1710009 2359580 0.275291
1800009 2581487 0.302724
1890009 2421919 0.219623
1980009 2489843 0.204766
2070009 2853090 0.274468
2160009 2962518 0.270887
2250009 2545778 0.11618
2340009 2829721 0.17306
2430009 2856887 0.149421
2520009 3063667 0.177453
2610009 3070623 0.150007
2700009 2875349 0.0609804
2790009 2915481 0.0430365
2880009 3030739 0.0497337
2970009 3506273 0.152944
3060009 3038450 0
3150009 3350510 0.0598419
3240009 3583130 0.0957601
3330009 3654194 0.0887159
3420009 3529574 0.031042
3510009 3720604 0.0566024
3600009 3843631 0.0633833
3690009 3796497 0.028049
3780009 4305817 0.122116
3870009 4210867 0.0809472
3960009 4041210 0.0200932
4050009 4255133 0.0482062
4140009 4389235 0.0567812
4230009 4338487 0.0250036
4320009 4690722 0.0790311
4410009 4491996 0.0182518
4500009 4658630 0.0340489
4590009 4766878 0.0371037
4680009 4767864 0.0184265
4770009 4961792 0.038652
4860009 4780019 0
4950009 4625017 0
5040009 4743901 0
5130009 4863488 0
5220009 4389665 0
5310009 4963470 0
5400009 5402580 0.000475884
5490009 4721948 0
5580009 4861183 0
5670009 5114396 0
5760009 4900641 0
5850009 5282853 0
5940009 5217269 0
6030009 5578874 0
6120009 5293155 0
6210009 5141524 0
6300009 5575973 0
6390009 6046491 0
6480009 5481410 0
6570009 6046994 0
6660009 6675867 0.00237542
6750009 6480429 0
... ... 0
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A.b base-faculty-2

supposed actual error ratio
140077 864362 0.837942
280077 667593 0.580467
420077 948082 0.556919
560077 936698 0.402073
700077 993038 0.295015
840077 1160923 0.276371
980077 1398604 0.299246
1120077 1396711 0.198061
1260077 1673783 0.247168
1400077 1735809 0.193415
1540077 1820067 0.153835
1680077 1848655 0.0911895
1820077 2140132 0.149549
1960077 2537678 0.22761
2100077 2208120 0.0489299
2240077 2515258 0.109405
2380077 2614506 0.0896647
2520077 2881609 0.125462
2660077 2885903 0.0782514
2800077 3165003 0.1153
2940077 3332968 0.11788
3080077 3420032 0.0994011
3220077 3505998 0.081552
3360077 3362380 0.000684932
3500077 3537422 0.0105571
3640077 3716196 0.020483
3780077 3810985 0.00811024
3920077 4104536 0.0449403
4060077 4195423 0.0322604
4200077 4076776 0
4340077 4097467 0
4480077 4112332 0
4620077 4532331 0
4760077 4780345 0.00423986
4900077 4739089 0
5040077 5108784 0.0134488
5180077 4898015 0
... ... 0
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B Appendix B: Formulas

B.a system

g = (l, p, r, S, a) where 0 < r < p < l

S = {si} = {(mi, bi, Pi,αi)}

B.b sporadic task model

Pi = {tj} = {(Cj, Dj, Tj)}

tj = (Cj, Dj, Tj)

B.c response time

rj = Qj + oj + ij + Cj

z = rj
p

oj =
⌊
rj
r

⌋
o

ij = ⌈z⌉mi58.5 ns

Queuing:

Qj = Qgj + Q
s
j

Qgj =
∑

{tj,tk}⊆Pi,tk∈hp(tj)

⌈
rj
Tk

⌉
Ck

Qsj = (⌈z⌉ + 1)(p – bi)

B.d resource server

I = ∆θ = θ2 – θ1
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B.d.a supply

w =
⌊
I
p

⌋
– 1

Bi = wbi

R = I – wp

U = p – R
2

βi = 2max(0, bi – U)

sbf(si, I) = Bi + βi – ρ

B.d.b demand

h = min(I – fTj, Cj)

dbf(tj, I) = fCj + h

dbf(Pi, I) =
∑

tj∈Pi
dbf(tj, I)

f =
⌊
I
Tj

⌋
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C Appendix C: hs code

This appendix contains the complete C++ source code for hs as well as a
groff man page which describes the use of all command-line options.

C.a man page for hs

HS(1) Emanuel Berg Computing Manual HS(1)

NAME
hs - hierarchical scheduler

SYNOPSIS
hs

[ -d | --debug ] [ -f | --freeze-core ]
[ -h | --hard ]
[ -l | --log ] [ -m | --memory-budget-add-on TERM ]
[ -p | --poll-llc ]
[ -P | --fork-processes ]
[ -q | --quiet ] [ -Q | --really-quiet ]
[ -r | --run ] [ -s | --system TASK-SYSTEM-FILE ]
[ -v | --verbose ] [ -w | --wait-for-forked-processes ]

DESCRIPTION
hs is a hierarchical scheduler. It executes either hard-coded software, or
forked processes, according to a polled-preemptive global EDF algorithm
acting on the real-time parameters of the sporadic task model.

OPTIONS
-d, --debug

Output various hard-coded debug information.

-f, --freeze-core
Do freeze the best-effort core when it exceeds its DRAM budget. To
do this, perf_event_open(2) is used along with a Linux cgroup. The

88



use of -f implies --poll-llc because that is how DRAM fetches are
booked. Note: For this to work, either run hs with 'sudo'; or, set
the owner of hs to root, and then set the SUID bit; or, do something
else that amounts to the same.

-h, --hard
Exit the scheduler with error code -1 immediately if a task is
delayed.

-l, --log
Log the time in nanoseconds at every tick to the file tick_times.log
in the same directory as hs.

-m, --memory-budget-add-onTERM
Add TERM to all memory budgets.

-p, --poll-llc
Every tick, poll the DRAM last-level-cache (LLC) to find out how
many non-cached DRAM accesses the best-effort core has made.

-P, --fork-processes
Don't use hard-coded mock software; fork processes. This means the
system file must consist of commands (including their arguments)
that are executable on the underlying system. E.g., to do the ‐equiv
alent of echo hello fool put /bin/echo(hello fool) in the system
file. (At this point hs cannot mix mock software and real processes;
and, absolute paths to executables are required.) The easiest way to
use this is to put all commands in a script, and then use that
script in the system file. (When freezing and thawing, the process
group id (PGID) is used, as to affect offsprings of the script as
well.)

-q, --quiet
Don't output task state transitions. Hard-coded task software should
typically be quiet as well although that has to be coded explicitly
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in hs.

-Q, --really-quiet
As --quiet only shut up hard-coded task software as well.

-r, --run
Run the system when it is loaded without confirmation. (Sometimes
though it is useful to have the system only loaded, not executed, to
be triggered exactly when needed.)

-s, --systemTASK-SYSTEM-FILE
Load the system from the specified file. Creating systems ‐interac
tively is just fun and games: it is much better to exclusively use
files. Use this with --run to execute a system from a file.

-v, --verbose
Every tick, output the state of the entire system.

-w, --wait-for-forked-processes
At the end of the execution of hs, wait(2) for all forked processes
to terminate. Use with care: with non-terminating processes this
makes hs non-terminating as well. This option overrides the "Global
lifetime" parameter as long as there are children left. -w implies
--fork-processes because otherwise there are none to wait for.

TASK SYSTEM
A task system is defined in a task-system text file. There are a couple of
examples in ./hs-linux/sys - otherwise, run hs interactively to see how a
system is expressed, then put the exact same in a text file. If need be,
later modify the selfsame text file to fine-tune the system, rather that
creating one anew interactively.

DOCUMENTATION AND CREDITS
There is an ambitious PDF document that describes this project: ./hs-
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linux/docs/report.pdf

QUESTIONS AND FEEDBACK
Written by Emanuel Berg <embe8573@student.uu.se> for Uppsala University,
2014.

SEE ALSO
fork(2), signal(2), wait(2), perf_event_open(2)

EMA Tools 2014 November 16 HS(1)
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C.b ask

#ifndef ASK_HH
#define ASK_HH

int ask_how_many(const char* what);
bool ask_yes_or_no(const char* q);

#endif

#include "ask.hh"
#include <iostream>

int ask_how_many(const char* what) {
int number = 0;
while (number <= 0) {
std::cout << "Create this many " << what << ": ";
std::cin >> number;

}
return number;

}

bool ask_yes_or_no(const char* q) {
const char no_input = 'n';
const char yes_input = 'y';
char input = '?';
while ((input != no_input) and

(input != yes_input)) {
std::cout << std::endl << q << " [enter y or n] ";
std::cin >> input;

}
return (input == yes_input);

}

C.c be

#ifndef BE_HH
#define BE_HH

#include <stdio.h>
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void init_BE_core ();
void close_BE_core();
void unfreeze_BE_core();
void freeze_BE_core(int fd);

#endif

#include "be.hh"
#include "options.hh"
#include "llc.hh"
#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <unistd.h>

bool is_frozen;
FILE* f = NULL;

void init_BE_core() {
const char* state_file = "/sys/fs/cgroup/freezer/0/freezer.state";
f = fopen(state_file, "w");
if (f) {
system("echo THAWED > /sys/fs/cgroup/freezer/0/freezer.state");
is_frozen = false;

}
else {
std::cerr << "Couldn't open file: " << state_file << std::endl

<< "(Did you init the cgroup freezer system?)" << std::endl;
exit(EXIT_FAILURE);

}
}

void unfreeze_BE_core() {
if (is_frozen) {

if (debug) { std::cout << "BE core THAWED." << std::endl; }
system("echo THAWED > /sys/fs/cgroup/freezer/0/freezer.state");
is_frozen = false;

}
}
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void freeze_BE_core(int fd) {
if (!is_frozen) {

if (debug) { std::cout << "BE core FROZEN!" << std::endl; }

if (test_cgroup_overhead) {
system("echo FROZEN > /sys/fs/cgroup/freezer/0/freezer.state");
long long count_at_freeze = query_BE_monitor(fd);
std::cout << "Froze at " << count_at_freeze << " misses." << std::endl;
std::cout << "Sleeping for 10 seconds..." << std::endl;
sleep(10);
long long count_at_awake = query_BE_monitor(fd);
long long slipped_accesses = count_at_awake - count_at_freeze;
std::cout << "Slipped accesses: " << slipped_accesses << std::endl;

}
else { system("echo FROZEN > /sys/fs/cgroup/freezer/0/freezer.state"); }

is_frozen = true;
}

}

void close_BE_core() { fclose(f); }

C.d file_io

#ifndef FILE_IO_HH
#define FILE_IO_HH

#include <fstream>

void file_goto_next_char (std::ifstream& f, char c);
void file_goto_next_colon(std::ifstream& f);
void file_goto_next_newline(std::ifstream& f);

#endif

#include "file_io.hh"
#include <fstream>

void file_goto_next_char(std::ifstream& f, char c) {
f.ignore(73, c);

}
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void file_goto_next_colon(std::ifstream& f) {
file_goto_next_char(f, ':');

}

void file_goto_next_newline(std::ifstream& f) {
file_goto_next_char(f, '\n');

}

C.e global_scheduler

#ifndef GLOBAL_SCHEDULER_HH
#define GLOBAL_SCHEDULER_HH

#include "task_scheduler.hh"
#include "main.hh"
#include "time_io.hh"
#include "log.hh"

#include <string>
#include <ctime>

extern bool crash;

class Global_Scheduler {
private:

Log logger;
FILE* get_log_file();
void log_time();

ms_t scheduling_rate;
ms_t lifetime;
ms_t period, period_left;

void resupply();
int number_of_schedulers;
Task_Scheduler** schedulers;

std::string scheduling_algorithm;
static const std::string scheduling_algorithms[];
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void set_tasks_path();
void read_parameters_from_keyboard();
void read_tasks_from_keyboard();
std::string tasks_path;
std::string filename;

long long sum_memory_budget();
int number_of_periods();

public:
Global_Scheduler();

~Global_Scheduler();
static void check_schedulers(Global_Scheduler* gs, Task_Scheduler* ts[]);
void load(std::string file);

void schedule();
void schedule_EDF();

void tick(ms_t tick_time, int llc_fd);
void check_period(ms_t tick_time);

void run();

void store();

friend std::ostream& operator<<(std::ostream& os, Global_Scheduler& gs);
void get_system_file(std::ifstream& f, std::string file);
void set_global_scheduler_parameters(std::ifstream& f);
void set_global_scheduling_algorithm(std::ifstream& f);
void set_task_schedulers(std::ifstream& f);
void init_from_file(std::string file);
void init_from_keyboard();

};

#endif

#include "global_scheduler.hh"
#include "task_scheduler.hh"
#include "options.hh"
#include "time_io.hh"
#include "file_io.hh"
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#include "ask.hh"
#include "llc.hh"
#include "be.hh"
#include "log.hh"

#include <cassert>
#include <cstddef>
#include <ctime>
#include <cmath>

#include <chrono>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <string>
#include <thread>
#include <unistd.h>

#include <sys/types.h>
#include <sys/wait.h>

bool crash = false;

const std::string Global_Scheduler::scheduling_algorithms[] = { "EDF" };

void Global_Scheduler::load(std::string file) {
std::ifstream f;
get_system_file(f, file);
set_global_scheduler_parameters(f);
set_global_scheduling_algorithm(f);
set_task_schedulers(f);

}

void Global_Scheduler::get_system_file(std::ifstream& f, std::string file) {
if (file != "") {
f.open(tasks_path + file, std::ios_base::in);
if (!f.good()) {
std::cerr << "Can't find file provided with the -s (--system) option: "

<< tasks_path << file << std::endl;
exit(EXIT_FAILURE);

}
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}
else {

bool first_try = true;
do {

if (first_try) { first_try = false; }
else { std::cout << "No such file. Try again!" << std::endl; }
std::cout << std::endl << "In " << tasks_path << ", load what file: ";
std::cin >> filename;
f.open(tasks_path + filename, std::ios_base::in);

} while (!f.good());
}

}

void Global_Scheduler::set_global_scheduler_parameters(std::ifstream& f) {
file_goto_next_colon(f);
f >> scheduling_rate;
assert(scheduling_rate > ms_t(0));

file_goto_next_colon(f); f >> period;
assert(period > ms_t(0));

period_left = period;

file_goto_next_colon(f); f >> lifetime;
assert(period <= lifetime);

}

void Global_Scheduler::set_global_scheduling_algorithm(std::ifstream& f) {
file_goto_next_colon(f);
f >> scheduling_algorithm;
bool found_algorithm = false;
for (int i = 0,

num_scheduling_algorithms = sizeof(scheduling_algorithms)/
sizeof(scheduling_algorithms[0]);

i < num_scheduling_algorithms;
i++) {

if (scheduling_algorithm == scheduling_algorithms[i]) {
found_algorithm = true;
break;

}
}

98



if (!found_algorithm) {
std::cerr << " Couldn't find global scheduler algorithm: "

<< scheduling_algorithm << std::endl;
exit(EXIT_FAILURE);

}
}

void Global_Scheduler::set_task_schedulers(std::ifstream& f) {
number_of_schedulers = 0;
std::streampos pos = f.tellg();
file_goto_next_newline(f);
while (f.good() and (f.peek() != EOF)) {

char current = f.get();
if ((current == '\n') or (current == ' ')) { number_of_schedulers++; }
file_goto_next_newline(f);

}
f.seekg(pos);
assert(f.good());
assert(number_of_schedulers > 0);

size_t schedulers_size = number_of_schedulers*sizeof(Task_Scheduler *);
schedulers = (Task_Scheduler **)malloc(schedulers_size);
assert(schedulers);

for (int i = 0; i < number_of_schedulers; i++) {
schedulers[i] = new Task_Scheduler(f);

}
check_schedulers(this, schedulers);

}

void Global_Scheduler::store() {
std::cout << "[ to store this SYSTEM, put this in the file "

<< tasks_path << "SYSTEM ]" << std::endl;
std::cout <<
"Global scheduling rate: " << scheduling_rate << std::endl <<
"Global period: " << period << std::endl <<
"Global lifetime: " << lifetime << std::endl <<
"Global scheduling algorithm: " << scheduling_algorithm << std::endl;

for (int i = 0; i < number_of_schedulers; i++) {
std::cout << std::endl;
schedulers[i]->store();
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}
std::cout << "[ done ] " << std::endl;

}

Global_Scheduler::~Global_Scheduler() {
for (int i = 0; i < number_of_schedulers; i++) {

delete schedulers[i];
}
if (schedulers) { free(schedulers); }

}

void Global_Scheduler::init_from_file(std::string file) {
set_tasks_path();
load(file);

}

void Global_Scheduler::init_from_keyboard() {
set_tasks_path();
read_parameters_from_keyboard();
read_tasks_from_keyboard();

}

void Global_Scheduler::set_tasks_path() {
const int max_path_len = 85;
char tasks_abs_path[max_path_len];
readlink("/proc/self/exe", tasks_abs_path, max_path_len);
std::string tap_str = tasks_abs_path;
tasks_path = tap_str.substr(0, tap_str.find_last_of('/'));
tasks_path += "/../sys/";

}

void Global_Scheduler::read_parameters_from_keyboard() {
std::cout << std::endl;
do {

do {
std::cout << "Global scheduling rate: ";
std::cin >> scheduling_rate;

} while (!(scheduling_rate > ms_t(0)));
do {

std::cout << "Global scheduler period: ";
std::cin >> period;
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} while (!(period > ms_t(0)));
do {
std::cout << "System lifetime: ";
std::cin >> lifetime;

} while (!(lifetime > ms_t(0)));
} while (!(period <= lifetime));
period_left = period;

// just set this, there is only one so far anyway
scheduling_algorithm = scheduling_algorithms[0];
std::cout << "Global scheduling algorithm: "

<< scheduling_algorithm << std::endl;
}

void Global_Scheduler::read_tasks_from_keyboard() {
number_of_schedulers = ask_how_many("task schedulers");

size_t schedulers_size = number_of_schedulers*sizeof(Task_Scheduler *);
schedulers = (Task_Scheduler **)malloc(schedulers_size);

for (int i = 0; i < number_of_schedulers; i++)
{ schedulers[i] = new Task_Scheduler(); }

check_schedulers(this, schedulers);
}

Global_Scheduler::Global_Scheduler() {
period_left = ms_t(0);
number_of_schedulers = 0;
if (log_tick) { logger.open_log_file(); }

}

void Global_Scheduler::schedule() {
if (scheduling_algorithm == "EDF") { schedule_EDF(); }
else {
std::cerr << "Unknown algorithm: " << scheduling_algorithm << std::endl;
exit(EXIT_FAILURE);

}
}

void Global_Scheduler::schedule_EDF() {
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int selected_scheduler;

tp_t earliest_deadline;
tp_t candidate_deadline;

bool is_data = false;
for (int i = 0; i < number_of_schedulers; i++) {
schedulers[i]->schedule();
if (schedulers[i]->is_ready()) {

candidate_deadline = schedulers[i]->earliest_deadline();
if (!is_data or (candidate_deadline < earliest_deadline)) {
is_data = true;
earliest_deadline = candidate_deadline;
selected_scheduler = i;

}
}

}
if (is_data) { schedulers[selected_scheduler]->run(); }
// else if (do_freeze_BE_core) {
// if (debug) { std::cout << "No scheduler is ready: unfreeze BE!" << std::endl; }
// unfreeze_BE_core();
// }

}

void Global_Scheduler::resupply() {
period_left = period;
for (int i = 0; i < number_of_schedulers; i++) {
schedulers[i]->resupply();

}
}

void Global_Scheduler::check_period(ms_t tick_time) {
period_left -= tick_time;
if (period_left < ms_t(0)) { resupply(); }

}

void Global_Scheduler::tick(ms_t tick_time, int llc_fd) {
long long current_BE_accesses = (poll_llc ? query_BE_monitor(llc_fd) : 0);
if (log_tick) { logger.print_time_to_file(); }
schedule();
for (int i = 0; i < number_of_schedulers; i++) {
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schedulers[i]->tick(tick_time, current_BE_accesses, llc_fd);
}
check_period(tick_time);

}

void Global_Scheduler::run() {
if (do_freeze_BE_core) { init_BE_core(); }

int llc_fd = 0;
if (poll_llc) { llc_fd = setup_BE_monitor(); }

tp_t system_start(std::chrono::system_clock::now());
tp_t system_end(system_start + lifetime);
tp_t re_sched_time;
int i = 0;
do {
re_sched_time = system_start + ++i*scheduling_rate;
tick(scheduling_rate, llc_fd);
std::this_thread::sleep_until(re_sched_time);

} while (!crash and std::chrono::system_clock::now() < system_end);

pid_t status;
if (wait_for_forked_processes) {
std::cout << "Waiting for children to terminate..." << std::endl;
do {
wait(&status);
if (status == -1 && errno != ECHILD) {

std::cerr << "Error while waiting for children to terminate." << std::endl;
exit(EXIT_FAILURE);

}
re_sched_time = system_start + ++i*scheduling_rate;
tick(scheduling_rate, llc_fd);
std::this_thread::sleep_until(re_sched_time);

} while (status > 0 );
}

if (poll_llc) {
long long BE_accesses = query_BE_monitor(llc_fd);
if (latex) {

long long execution_memory_budget = sum_memory_budget()*number_of_periods();
long long errors = BE_accesses - execution_memory_budget;
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float error_ratio = (errors > 0 ? (float)errors/(float)BE_accesses : 0);
std::cout << " "

<< execution_memory_budget << " & "
<< BE_accesses << " & "
<< error_ratio << " \\\\ " << std::endl;

}
else {

std::cout << "Terminated: " << BE_accesses << " BE accesses" << std::endl;
}
close_BE_monitor(llc_fd);

}

if (do_freeze_BE_core) { close_BE_core(); }
}

long long Global_Scheduler::sum_memory_budget() {
long long sum_budget = 0;
for (int s = 0; s < number_of_schedulers; s++) {
sum_budget += schedulers[s]->get_max_BE_accesses();

}
return sum_budget;

}

int Global_Scheduler::number_of_periods() {
int int_lifetime = std::chrono::duration_cast<std::chrono::milliseconds>(lifetime).count();
int int_period = std::chrono::duration_cast<std::chrono::milliseconds>(period).count();
int periods = int_lifetime/int_period;
int remainder = int_lifetime%int_period;
if (remainder) { periods++; }
return periods;

}

std::ostream& operator<<(std::ostream& os, Global_Scheduler& gs) {
os << "*** global (scheduler) scheduler ***" << std::endl

<< "Rate: " << gs.scheduling_rate << std::endl
<< "Period: " << gs.period
<< " (left: " << gs.period_left << ")" << std::endl
<< "Lifetime: " << gs.lifetime << std::endl
<< "Schedulers: " << gs.number_of_schedulers << std::endl << std::endl;

for (int i = 0; i < gs.number_of_schedulers; i++) {
os << gs.schedulers[i];
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}
return os;

}

void Global_Scheduler::check_schedulers(Global_Scheduler* gs,
Task_Scheduler* ts[]) {

ms_t total_budget(0);
for (int i = 0; i < gs->number_of_schedulers; i++) {
ts[i]->check_tasks();
total_budget += ts[i]->get_budget();

}
assert(total_budget <= gs->period);

}

C.f llc

#ifndef LLC_HH
#define LLC_HH

#include <unistd.h>
#include <linux/perf_event.h>

long perf_event_open(struct perf_event_attr* hw_event,
pid_t pid,
int cpu,
int group_fd,
unsigned long flags);

void config_event(struct perf_event_attr* pe);
int init_event(struct perf_event_attr* pe);
void activate_event(int fd);
void close_event(int fd);
long long query_BE_monitor(int fd);
bool do_block_BE(int fd, long long max_misses);
int setup_BE_monitor();
void close_BE_monitor(int fd);

const int ALL_PIDS = -1;
const int ALL_CPUS = -1;
const int LEADER = -1;
const unsigned long NO_FLAGS = 0;
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#endif

#include "llc.hh"

#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/perf_event.h>
#include <asm/unistd.h>
#include <time.h>
#include <unistd.h>

long perf_event_open(struct perf_event_attr* hw_event,
pid_t pid,
int cpu,
int group_fd,
unsigned long flags) {

return (syscall(__NR_perf_event_open, hw_event, pid, cpu, group_fd, flags));
}

void config_event(struct perf_event_attr* pe) {
pe->type = PERF_TYPE_HW_CACHE;
pe->size = sizeof(struct perf_event_attr);
pe->config = PERF_COUNT_HW_CACHE_LL |

PERF_COUNT_HW_CACHE_OP_READ << 8 |
PERF_COUNT_HW_CACHE_RESULT_MISS << 16;

pe->disabled = 1;
pe->exclude_kernel = 1;
pe->exclude_hv = 1;

}

int init_event(struct perf_event_attr* pe) {
int core = atoi(std::getenv("BE_CORE"));
int fd = perf_event_open(pe, ALL_PIDS, core, LEADER, NO_FLAGS);
if (fd == -1) {
std::cerr << "Error with the LLC counter: " << pe->config;
exit(EXIT_FAILURE);

}
return fd;

}
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void activate_event(int fd) {
ioctl(fd, PERF_EVENT_IOC_RESET, 0);
ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

}

void close_event(int fd) {
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
close(fd);

}

int setup_BE_monitor() {
struct perf_event_attr pe_BE_monitor;
memset(&pe_BE_monitor, 0, sizeof(struct perf_event_attr));
config_event(&pe_BE_monitor);
int fd = init_event(&pe_BE_monitor);
activate_event(fd);
return fd;

}

long long query_BE_monitor(int fd) {
long long count = 0;
read(fd, &count, sizeof(count));
return count;

}

bool do_block_BE(int fd, long long max_misses) {
return (query_BE_monitor(fd) > max_misses);

}

void close_BE_monitor(int fd) { close_event(fd); }

C.g log

#ifndef LOG_HH
#define LOG_HH

#include <iostream>

class Log {
private:
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const char* log_file;
FILE* log;
bool opened;
void close_log_file();
long long unsigned int now_in_ns();

public:
Log();

~Log();
void open_log_file();
void print_time_to_file();

};

#endif

#include "log.hh"
#include "time_io.hh"
#include <chrono>
#include <iostream>

Log::Log() {
log_file = "./tick_times.log";
opened = false;

}

Log::~Log() {
if (opened) { close_log_file(); }

}

void Log::open_log_file() {
log = fopen(log_file, "w");
if (!log) {
std::cerr << "Couldn't create or open file: " << log_file << std::endl;
exit(EXIT_FAILURE);

}
else { opened = true; }

}

void Log::close_log_file() { fclose(log); }

long long unsigned int Log::now_in_ns() {
std::chrono::time_point<std::chrono::system_clock> now = std::chrono::system_clock::now();
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time_t tnow = std::chrono::system_clock::to_time_t(now);
tm *date = std::localtime(&tnow);
date->tm_hour = 0;
date->tm_min = 0;
date->tm_sec = 0;
tp_t midnight = std::chrono::system_clock::from_time_t(std::mktime(date));

return std::chrono::duration_cast<std::chrono::nanoseconds>(now - midnight).count();
}

void Log::print_time_to_file() { fprintf(log, "%llu\n", now_in_ns()); }

C.h main

#ifndef MAIN_HH
#define MAIN_HH

int main(int argc, char* argv[]);

#endif

#include "main.hh"
#include "global_scheduler.hh"
#include "ask.hh"
#include "options.hh"

#include <iostream>

int main(int argc, char* argv[]) {
set_options(argc, argv);
bool read_from_file = ((task_system != "") or

ask_yes_or_no("Load an existing task system?"));
Global_Scheduler gs = Global_Scheduler();
if (read_from_file) { gs.init_from_file(task_system); }
else {
gs.init_from_keyboard();
gs.store();

}
if (!quiet) { std::cout << gs; }
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if (run or ask_yes_or_no("System loaded. Run it?")) { gs.run(); }

if (crash) { return -1; }
else { return 0; }

}

C.i options

#ifndef OPTIONS_HH
#define OPTIONS_HH

#include <string>

void print_help_and_exit(std::string);
void set_options(int argc, char* argv[]);

extern bool debug;
extern bool print_task_tick;
extern bool quiet;
extern bool really_quiet;
extern bool log_tick;
extern bool latex;

extern std::string task_system;
extern bool run;
extern bool hard;

extern bool poll_llc;
extern bool do_freeze_BE_core;
extern int memory_budget_add_on;
extern bool test_cgroup_overhead;

extern bool fork_processes;
extern bool wait_for_forked_processes;
extern bool random_delay;

#endif

#include "options.hh"
#include <getopt.h>
#include <iostream>
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#include <string>

// verbose
bool debug = false;
bool print_task_tick = false;
bool quiet = false;
bool really_quiet = false;
bool log_tick = false;
bool latex = false;

// critical system
bool hard = false;
bool fork_processes = false;
bool wait_for_forked_processes = false;
bool run = false;
bool random_delay = true;
std::string task_system = "";

// be-core
bool poll_llc = false;
bool do_freeze_BE_core = false;
bool test_cgroup_overhead = false;
int memory_budget_add_on = 0;

void print_help_and_exit(char* program) {
std::cerr << "Incorrect usage. This program has a man page." << std::endl;
exit(EXIT_FAILURE);

}

static struct option const long_options[] = {
{"debug", no_argument, NULL, 'd'},
{"fork-processes", no_argument, NULL, 'P'},
{"freeze-core", no_argument, NULL, 'f'},
{"hard", no_argument, NULL, 'h'},
{"no-random-delay", no_argument, NULL, 'i'},
{"log-tick", no_argument, NULL, 'l'},
{"memory-budget-add-on", required_argument, NULL, 'm'},
{"poll-llc", no_argument, NULL, 'p'},
{"quiet", no_argument, NULL, 'q'},
{"really-quiet", no_argument, NULL, 'Q'},
{"run", no_argument, NULL, 'r'},
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{"system", required_argument, NULL, 's'},
{"test-cgroup-overhead", no_argument, NULL, 't'},
{"verbose", no_argument, NULL, 'v'},
{"wait", no_argument, NULL, 'w'},
{"latex", no_argument, NULL, 'x'},
{0, 0, 0, 0}

};

void set_options(int argc, char* argv[]) {
char* program = argv[0];
while (true) {

int oi = -1;
int c = getopt_long(argc, argv, "dhivQqrs:tlm:Ppfwx", long_options, &oi);
if (c == -1) { break; }
switch (c) {
case 'i': random_delay = false; break;
case 'd': debug = true; break;
case 'f': do_freeze_BE_core = true;

poll_llc = true; break;
case 'h': hard = true; break;
case 'l': log_tick = true; break;
case 'v': print_task_tick = true; break;
case 'Q': really_quiet = true;
case 'q': quiet = true; break;
case 'r': run = true; break;
case 'p': poll_llc = true; break;
case 'P': fork_processes = true; break;
case 's': if (optarg) { task_system = optarg; }

else { print_help_and_exit(program); }
break;

case 't': do_freeze_BE_core = true;
poll_llc = true;
test_cgroup_overhead = true;
break;

case 'm': if (optarg) { memory_budget_add_on = atoi(optarg); }
else { print_help_and_exit(program); }
break;

case 'w': wait_for_forked_processes = true;
fork_processes = true;
break;

case 'x': latex = true; break;
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default: print_help_and_exit(program);
}

}
}

C.j program

#ifndef PROGRAM_HH
#define PROGRAM_HH

#include <string>
#include "time_io.hh"

void chase_pointers(ms_t allowed_time);
void run_program (std::string program, std::string** program_args);
int number_of_args(std::string program);
void helloworld();
void faculty(int highest);

#endif

#include "program.hh"
#include "time_io.hh"
#include "options.hh"

#include <stdlib.h>
#include <limits.h>
#include <unistd.h>
#include <sys/times.h>
#include <math.h>
#include <iostream>
#include <sstream>
#include <chrono>

int number_of_args(std::string program) {
if (program == "helloworld") { return 0; }
else if (program == "faculty") { return 1; }
else {
std::cerr << "Unknown program: " << program << std::endl;
exit(EXIT_FAILURE);

}
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}

void run_program (std::string program, std::string** program_args) {
if (program == "helloworld") { helloworld(); }
else if (program == "faculty") {

int highest = atoi(program_args[0]->c_str());
faculty(highest);

}
else {
std::cerr << "Can't find program: " << program << std::endl;
exit(EXIT_FAILURE);

}
}

void helloworld() {
if (!really_quiet) { std::cout << "Hello, world!" << std::endl; }

}

void faculty(int highest) {
static int current = 0;
static int sum = 1;
bool news = true;
switch (current) {
case 0: { current = highest; sum = 1; break; }
case 1: { news = false; break; }
default: { sum *= current--; break; }
}
if (news and !really_quiet) {
std::cout << "Faculty is now: " << sum << std::endl;

}
}

C.k sporadic_task

#ifndef SPORADIC_TASK_HH
#define SPORADIC_TASK_HH

#include <iostream>
#include <fstream>
#include <string>
#include <ctime>
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#include "main.hh"
#include "time_io.hh"

class Sporadic_Task {
private:

int id;
ms_t c, d, t;
std::string program;
std::string** program_args;
int argc;

public:
Sporadic_Task();
Sporadic_Task(std::ifstream& f);
int get_id() { return id; }
ms_t get_c() { return c; }
ms_t get_d() { return d; }
ms_t get_t() { return t; }
void store();
void run(ms_t duration_secs);
static void check_task(Sporadic_Task* t);
friend std::ostream& operator<<(std::ostream& os, const Sporadic_Task* t);
void launch_extern_program();

};

#endif

#include "sporadic_task.hh"
#include "time_io.hh"
#include "file_io.hh"
#include "options.hh"
#include "program.hh"
#include <unistd.h>

#include <iostream>
#include <fstream>
#include <string>
#include <cassert>
#include <ctime>

#include <thread>
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void Sporadic_Task::run(ms_t duration) {
if (!quiet) {
std::cout << "task " << id << " executes: " << program << std::endl;

}
// for extern processes, this is implicit
if (!fork_processes) { run_program(program, program_args); }

}

void Sporadic_Task::launch_extern_program() {
assert(fork_processes);
char* const program_name = const_cast<char*>(program.c_str());
int arg_array_size = argc + 1;
char* program_argv[arg_array_size];
program_argv[0] = program_name;
for (int i = 0; i < argc; i++) {
program_argv[i + 1] = const_cast<char*>(program_args[i]->c_str());

}
program_argv[arg_array_size] = NULL;
if (execv(program_name, program_argv) == -1) {
std::cerr << "Error executing program: " << program_name << std::endl;
exit(127);

}
}

void Sporadic_Task::check_task(Sporadic_Task* t) {
assert( 0 < t->id);
assert(ms_t(0) < t->c);
assert( t->c <= t->d);
assert( t->d <= t->t);

}

Sporadic_Task::Sporadic_Task() {
std::cout << "Create task. State ID, C, D, and T: ";
std::cin >> id >> c >> d >> t;

argc = -1;
while (argc == -1) {
std::cout << "State program of t" << id << ": ";
std::cin >> program;
argc = number_of_args(program);

}
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if (argc > 0 ) {
size_t strings_size = argc*sizeof(std::string *);
program_args = (std::string **)malloc(strings_size);
assert(program_args);

std::cout << "Input the " << argc
<< " arguments of " << program << ": ";

for (int i = 0; i < argc; i++) {
std::string *s = new std::string();
std::cin >> *s;
program_args[i] = s;

}
}
else { program_args = NULL; }
check_task(this);

}

Sporadic_Task::Sporadic_Task(std::ifstream& f) {
file_goto_next_char(f, 't'); f >> id;
file_goto_next_char(f, '('); f >> c;
file_goto_next_char(f, ','); f >> d;
file_goto_next_char(f, ','); f >> t;
file_goto_next_char(f, ' '); std::getline(f, program, '(');
int arg_list_start_pos = f.tellg();
argc = 0;
char current;
if (fork_processes) {

bool done = false;
while (!done) {
current = f.get();
switch (current) {
case ')': done = true; break;
case ' ': continue;
default:

argc++;
bool argument_done = false;
while (!argument_done) {
current = f.get();
switch (current) {
case ',': argument_done = true; break;
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case ')': argument_done = done = true; break;
}

}
}

}
}
else { argc = number_of_args(program); }
f.seekg(arg_list_start_pos);
if (argc > 0 ) {
size_t strings_size = argc*sizeof(std::string *);
program_args = (std::string **)malloc(strings_size);
assert(program_args);

char delim = ',';
for (int i = 0; i < argc; i++) {

if (i != 0) { f.get(); }
std::string *s = new std::string();
if (i == argc - 1) { delim = ')'; }
std::getline(f, *s, delim);
program_args[i] = s;

}
}
else { program_args = NULL; }

check_task(this);
if (debug) {
std::cout << "The program is " << program << "." << std::endl;
for (int i = 0; i < argc; i++) {

std::cout << "Argument " << i << ": " << *(program_args[i]) << std::endl;
}

}
}

void Sporadic_Task::store() { std::cout << this << std::endl; }

std::ostream& operator<<(std::ostream& os, const Sporadic_Task* t) {
os << "t" << t->id << " = ("

<< t->c << ", " << t->d << ", " << t->t << ") "
<< t->program;

int argc = t->argc;
os << "(";
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for (int i = 0; i < argc; i++) {
os << *(t->program_args)[i];
if (i != argc - 1) { os << ", "; }

}
os << ")";
return os;

}

C.l task_scheduler

#ifndef TASK_SCHEDULER_HH
#define TASK_SCHEDULER_HH

#include "tcb.hh"
#include "main.hh"
#include "time_io.hh"

#include <fstream>
#include <string>

class Task_Scheduler {
private:

static const std::string scheduling_algorithms[];
std::string scheduling_algorithm;

long long max_BE_accesses;
long long memory_budget_left;

int critical_level;
ms_t cpu_budget, cpu_budget_left;

int number_of_tasks;
tcb** tasks;
tcb* hp_task;
bool selected;

public:
Task_Scheduler(std::ifstream& f);
Task_Scheduler();

~Task_Scheduler();
void check_tasks();
void store();
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void run();
void check_memory_budget(long long current_BE_accesses, int fd);
void tick(ms_t tick_time, long long current_BE_accesses, int fd);
void schedule();
void schedule_EDF();

long long get_max_BE_accesses();

bool is_ready();
tp_t earliest_deadline();
void resupply();
ms_t get_budget() { return cpu_budget; }

friend std::ostream& operator<<(std::ostream& os, Task_Scheduler* ts);
void set_tasks(std::ifstream& f);
void set_scheduler_parameters(std::ifstream& f);
void set_scheduling_algorithm(std::ifstream& f);

};

#endif

#include "task_scheduler.hh"
#include "file_io.hh"
#include "ask.hh"
#include "tcb.hh"
#include "time_io.hh"
#include "be.hh"
#include "llc.hh"
#include "options.hh"

#include <cstddef>
#include <cassert>
#include <ctime>

#include <iostream>
#include <fstream>
#include <string>

const std::string Task_Scheduler::scheduling_algorithms[] = { "EDF" };

Task_Scheduler::Task_Scheduler(std::ifstream& f) {

120



set_scheduler_parameters(f);
set_scheduling_algorithm(f);
set_tasks(f);

}

Task_Scheduler::~Task_Scheduler() {
for (int i = 0; i < number_of_tasks; i++) { delete tasks[i]; }
free(tasks);

}

void Task_Scheduler::set_scheduler_parameters(std::ifstream& f) {
selected = false;

// critical level
file_goto_next_colon(f); f >> critical_level;
assert(critical_level > 0);

// CPU budget
file_goto_next_colon(f); f >> cpu_budget;
assert(cpu_budget > ms_t(0));
cpu_budget_left = cpu_budget;

// memory budget (memory_budget_add_on is zero unless -m MEMBUD)
file_goto_next_colon(f);
long long stated_max_BE_accesses;
f >> stated_max_BE_accesses;
max_BE_accesses = stated_max_BE_accesses + memory_budget_add_on;
assert(max_BE_accesses >= 0);

}

void Task_Scheduler::set_scheduling_algorithm(std::ifstream& f) {
bool found_algorithm = false;
file_goto_next_colon(f);
f >> scheduling_algorithm;
for (int i = 0,

num_scheduling_algorithms = sizeof(scheduling_algorithms)/
sizeof(scheduling_algorithms[0]);

i < num_scheduling_algorithms;
i++) {

if (scheduling_algorithm == scheduling_algorithms[i]) {
found_algorithm = true;
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break;
}

}
if (!found_algorithm) {
std::cerr << " Couldn't find global scheduler algorithm: "

<< scheduling_algorithm << std::endl;
exit(EXIT_FAILURE);

}
}

void Task_Scheduler::set_tasks(std::ifstream& f) {
number_of_tasks = 0;
std::streampos pos = f.tellg();
file_goto_next_newline(f);
while (f.good() and (f.peek() != EOF)) {

char c = f.get();
if (c == 't') { number_of_tasks++; }
else { break; }
file_goto_next_newline(f);

}
assert(number_of_tasks > 0);
f.seekg(pos);
assert(f.good());

size_t tcbs_size = number_of_tasks*sizeof(tcb *);
tasks = (tcb **)malloc(tcbs_size);

assert(tasks);

for (int i = 0; i < number_of_tasks; i++) { tasks[i] = new tcb(f); }
}

void Task_Scheduler::check_tasks() {
ms_t test_budget = cpu_budget;
int max_instances;
ms_t max_c;
for (int i = 0; i < number_of_tasks; i++) {
max_instances = cpu_budget/tasks[i]->get_t();
max_c = tasks[i]->get_c()*max_instances;
test_budget -= max_c;

}
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if (test_budget < ms_t(0)) {
std::string Bi = "B" + std::to_string(critical_level);
std::cout << "Warning: sum((" << Bi

<< "/Ti)*Ci) > " << Bi << std::endl;
}

}

void Task_Scheduler::store() {
std::cout << "Critical level: " << critical_level << std::endl

<< "Budget: " << cpu_budget << std::endl
<< "Task scheduling algorithm: " << scheduling_algorithm << std::endl
<< "Max BE accesses: " << max_BE_accesses << std::endl;

for (int i = 0; i < number_of_tasks; i++) { tasks[i]->store(); }
}

Task_Scheduler::Task_Scheduler() {
selected = false;

std::cout << "Critical level: ";
std::cin >> critical_level;
assert(critical_level > 0);

std::cout << "Budget: ";
std::cin >> cpu_budget;
assert(cpu_budget > ms_t(0));
cpu_budget_left = cpu_budget;

std::cout << "Max BE accesses: ";
std::cin >> max_BE_accesses;
assert(max_BE_accesses >= 0);

scheduling_algorithm = scheduling_algorithms[0];
std::cout << "Task scheduling algorithm: "

<< scheduling_algorithm << std::endl;

number_of_tasks = ask_how_many("tasks");
size_t tcbs_size = number_of_tasks*sizeof(tcb *);
tasks = (tcb **)malloc(tcbs_size);
assert(tasks);
for (int i = 0; i < number_of_tasks; i++) { tasks[i] = new tcb(); }

}
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void Task_Scheduler::resupply() {
cpu_budget_left = cpu_budget;
memory_budget_left = max_BE_accesses;

}

void Task_Scheduler::schedule() {
if (scheduling_algorithm == "EDF") { schedule_EDF(); }
else { std::cerr << "Can't schedule. Unknown algorithm: "

<< scheduling_algorithm << std::endl; }
}

tp_t Task_Scheduler::earliest_deadline() {
assert(hp_task);
return hp_task->get_rt_c();

}

void Task_Scheduler::schedule_EDF() {
int ED_task_index;
std::chrono::system_clock::time_point earliest_deadline;
std::chrono::system_clock::time_point candidate_deadline;

bool is_data = false;
for (int i = 0; i < number_of_tasks; i++) {
tasks[i]->stop();
if (tasks[i]->is_employed()) {

candidate_deadline = tasks[i]->get_rt_c();
if ((!is_data) or (candidate_deadline < earliest_deadline)) {
is_data = true;
earliest_deadline = candidate_deadline;
ED_task_index = i;

}
}

}
hp_task = (is_data ? tasks[ED_task_index] : NULL);

}

void Task_Scheduler::run() {
assert(hp_task);
selected = true;

}
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bool Task_Scheduler::is_ready() {
return ((cpu_budget_left > ms_t(0)) and

hp_task);
}

void Task_Scheduler::check_memory_budget(long long current_BE_accesses,
int fd) {

static long long last_number_of_BE_accesses = 0;
if (poll_llc) {
memory_budget_left -= current_BE_accesses - last_number_of_BE_accesses;
last_number_of_BE_accesses = current_BE_accesses;
if (debug and (memory_budget_left < 0) ) {

std::cout << "Memory budget remaining: "
<< memory_budget_left
<< std::endl;

}
if (do_freeze_BE_core) {

if (memory_budget_left < 0) { freeze_BE_core(fd); }
else { unfreeze_BE_core(); }

}
}

}

void Task_Scheduler::tick(ms_t tick_time,
long long current_BE_accesses,
int fd) {

if (selected) {
hp_task->run();
cpu_budget_left -= tick_time;
check_memory_budget(current_BE_accesses, fd);

}
for (int i = 0; i < number_of_tasks; i++) { tasks[i]->tick(tick_time); }
selected = false;

}

std::ostream& operator<<(std::ostream& os, Task_Scheduler* ts) {
os << "== scheduler " << ts->critical_level << " ==" << std::endl

<< "Critical level: " << ts->critical_level << std::endl
<< "Max BE accesses: " << ts->max_BE_accesses << std::endl
<< "CPU-budget: " << ts->cpu_budget
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<< " (left: " << ts->cpu_budget_left << ")" << std::endl
<< "Algorithm: " << ts->scheduling_algorithm << std::endl
<< "Tasks: " << ts->number_of_tasks << std::endl;

for (int i = 0; i < ts->number_of_tasks; i++) {
std::cout << ts->tasks[i];

}
os << std::endl;
return os;

}

long long Task_Scheduler::get_max_BE_accesses() { return max_BE_accesses; }

C.m tcb

#ifndef TCB_HH
#define TCB_HH

#include "sporadic_task.hh"
#include "time_io.hh"

#include <fstream>
#include <ctime>
#include <sys/types.h>

class tcb {
private:

enum class State { NOT_INIT, UNEMPLOYED, READY,
RUNNING, HOLD, DELAYED };

Sporadic_Task *t;
State s;
ms_t CPU_time;
pid_t pid;
pid_t kill_group_pid;
std::chrono::system_clock::time_point rt_a, rt_c, rt_d, rt_t;
void wierd_task_state();
void stop_process();
void cont_process();
void kill_process();
void usr1_process();
void extern_process_change_state(State state);

public:
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tcb();
tcb(std::ifstream& f);

~tcb();

void change_state(State state);

bool is_employed();

void tick(ms_t tick_time);
void tick_running(ms_t tick_time);

void update_state();
void check_release();
void check_period_over();
void check_delayed();
void check_done();

void release();

std::chrono::system_clock::time_point get_rt_c();

int get_id() { return t->get_id(); }
ms_t get_c() { return t->get_c(); }
ms_t get_d() { return t->get_d(); }
ms_t get_t() { return t->get_t(); }

void run();
void stop();

void store();

void print_state(std::ostream& os = std::cout);
void print_relevant_runtime_data(std::ostream& os = std::cout);
void print_runtime_data(std::ostream& os = std::cout);
void print_task_parameters(std::ostream& os = std::cout);
void print_end_of_period(std::ostream& os = std::cout);
void print_completed(std::ostream& os = std::cout);
void print_actual_deadline(std::ostream& os = std::cout);
void print(std::ostream& os = std::cout);
friend std::ostream& operator<<(std::ostream& os, tcb* tcb);

};
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#endif

#include "tcb.hh"
#include "global_scheduler.hh"
#include "sporadic_task.hh"
#include "options.hh"
#include "time_io.hh"

#include <iostream>
#include <iomanip>

#include <cstdlib>
#include <cassert>
#include <fstream>
#include <chrono>
#include <thread>

#include <signal.h>
#include <unistd.h>

void tcb::store() { t->store(); }

tcb::~tcb() {
bool error = false;
if (fork_processes) {

if (kill(kill_group_pid, SIGKILL) == -1) {
std::cerr << "Couldn't send kill signal." << std::endl;
error = true;

}
}
delete t;
if (error) { exit(EXIT_FAILURE); }

}

tcb::tcb() {
t = new Sporadic_Task();
s = State::UNEMPLOYED; // todo: duplicate

}

tcb::tcb(std::ifstream& f) {
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t = new Sporadic_Task(f);
s = State::UNEMPLOYED; // todo: duplicate
if (fork_processes) {
pid = fork();
if (pid == -1) {
std::cerr << "Fork failed." << std::endl;
exit(EXIT_FAILURE);

}
else if (pid == 0) { t->launch_extern_program(); }
else if (pid > 0) {

if (setpgid(pid, pid) == -1) {
std::cerr << "Couldn't change PGID." << std::endl;
exit(EXIT_FAILURE);

}
kill_group_pid = -1*pid;
sleep(1); // can't have this
if (kill(kill_group_pid, SIGSTOP) == -1) {

std::cerr << "STOP to " << kill_group_pid << " failed." << std::endl;
exit(EXIT_FAILURE);

}
}

}
if (debug) { std::cout << "Contruction of TCB done." << std::endl; }

}

bool tcb::is_employed() { return ((s == State::READY) or
(s == State::RUNNING)); }

void tcb::wierd_task_state() {
std::cerr << "Wierd task state. Go find the bug." << std::endl;
exit(EXIT_FAILURE);

}

void tcb::cont_process() {
if (kill(kill_group_pid, SIGCONT) == -1) {
std::cerr << "Couldn't CONT: " << kill_group_pid << std::endl;
exit(EXIT_FAILURE);

}
}

void tcb::stop_process() {
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if (kill(kill_group_pid, SIGSTOP) == -1) {
std::cerr << "Couldn't STOP: " << kill_group_pid << std::endl;
exit(EXIT_FAILURE);

}
}

void tcb::usr1_process() {
if (kill(kill_group_pid, SIGUSR1) == -1) {
std::cerr << "Couldn't USR1: " << kill_group_pid << std::endl;
exit(EXIT_FAILURE);

}
std::cerr << "USR1 sent to: " << kill_group_pid << std::endl;

}

void tcb::kill_process() {
if (kill(kill_group_pid, SIGKILL) == -1) {
std::cerr << "Couldn't KILL: " << kill_group_pid << std::endl;
exit(EXIT_FAILURE);

}
}

void tcb::extern_process_change_state(tcb::State state) {
switch (state) {
case State::NOT_INIT: wierd_task_state(); break;
case State::READY:
case State::HOLD:
case State::UNEMPLOYED: stop_process(); break;
case State::RUNNING: cont_process(); break;
case State::DELAYED: kill_process(); break;
}

}

void tcb::change_state(State state) {
if (!quiet) {
std::cout << "task " << get_id() << ": " << std::setw(10);
print_state();

}

switch (state) {
case State::NOT_INIT: wierd_task_state(); break;
case State::READY: assert((s == State::UNEMPLOYED) or
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(s == State::RUNNING)); break;
case State::RUNNING: assert(s == State::READY); break;
case State::HOLD: assert(s == State::RUNNING); break;
case State::UNEMPLOYED: assert(s == State::HOLD); break;
case State::DELAYED: assert(is_employed()); break;
}
s = state;
if (fork_processes) { extern_process_change_state(s); }
if (!quiet) {
std::cout << " -> ";
print_state();
std::cout << std::endl;

}
}

/* release is UNEMPLOYED -> READY */
void tcb::release() {

change_state(State::READY);
CPU_time = ms_t(0);
rt_a = std::chrono::system_clock::now();
rt_c = rt_a + get_c();
rt_d = rt_a + get_d();
rt_t = rt_a + get_t();
if (fork_processes) { usr1_process(); }

}

/* run is READY -> RUNNING */
void tcb::run() { change_state(State::RUNNING); }

/* stop is RUNNING -> READY.
The reason there is no assertion is it might be
useful to just tell a bunch of tasks to stop and
don't bother what state they have, unless for the
one RUNNING in what case it is READY (i.e.,
stopped). */

void tcb::stop() {
if (s == State::RUNNING) { change_state(State::READY); }

}

void tcb::tick(ms_t tick_time) {
switch (s) {
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case State::NOT_INIT:
case State::DELAYED:
case State::READY:
case State::HOLD:
case State::UNEMPLOYED: break;
case State::RUNNING: tick_running(tick_time); break;
}
update_state();
if (print_task_tick) { std::cout << this; }

}

void tcb::tick_running(ms_t tick_time) {
assert(s == State::RUNNING);
t->run(tick_time);
CPU_time += tick_time;
check_done();

}

void tcb::update_state() {
check_release();
check_period_over();
check_delayed();

}

/* check_release is UNEMPLOYED -> READY */
void tcb::check_release() {

if (s == State::UNEMPLOYED) {
if (random_delay) {

int r = rand() % 10;
if (r == 0) { release(); }

}
else { release(); }

}
}

/* check_done is RUNNING -> HOLD */
void tcb::check_done() {

if (CPU_time >= get_c()) { change_state(State::HOLD); }
}

/* check_period_over is HOLD -> UNEMPLOYED */
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void tcb::check_period_over() {
if (s == State::HOLD) {

if (std::chrono::system_clock::now() >= rt_t) {
change_state(State::UNEMPLOYED);

}
}

}

/* only a READY or RUNNING task can be DELAYED.
HOLD is as "unemployed" as UNEMPLOYED */

void tcb::check_delayed() {
if (is_employed()) {

if (std::chrono::system_clock::now() >= rt_d) {
change_state(State::DELAYED);
if (not really_quiet) { std::cout << "Oh, no! Delayed task!" << std::endl; }
if (fork_processes) { kill_process(); }
if (hard) { crash = true; }

}
}

}

void tcb::print_state(std::ostream& os) {
switch(s) {
case State::UNEMPLOYED: os << "unemployed"; break;
case State::NOT_INIT: os << "not_init"; break;
case State::HOLD: os << "hold"; break;
case State::READY: os << "ready"; break;
case State::RUNNING: os << "running"; break;
case State::DELAYED: os << "delayed"; break;
}

}

void tcb::print_runtime_data(std::ostream& os) {
print_completed(os);
print_actual_deadline(os);
print_end_of_period(os);

}

void tcb::print_end_of_period(std::ostream& os) {
os << "Earliest possible next instance: " << rt_t << std::endl;

}
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void tcb::print_completed(std::ostream& os) {
os << "Running time (CPU-time) so far: " << CPU_time << std::endl;

}

void tcb::print_actual_deadline(std::ostream& os) {
os << "Actual deadline: " << rt_d << std::endl;

}

void tcb::print_relevant_runtime_data(std::ostream& os) {
switch (s) {
case State::NOT_INIT:
case State::UNEMPLOYED: break;
case State::HOLD: print_end_of_period(os); break;
case State::DELAYED:
case State::READY:
case State::RUNNING: print_completed(os);

print_actual_deadline(os); break;
}

}

void tcb::print_task_parameters(std::ostream& os) {
if (s != State::NOT_INIT) { os << t << std::endl; }
else { std::cerr << "Not initialized: " << this << std::endl; }

}

void tcb::print(std::ostream& os) {
if (!quiet) {
os << "--- task " << get_id() << " ---" << std::endl;
print_task_parameters(os);
print_state(os);
print_relevant_runtime_data(os);
std::cout << std::endl;

}
}

std::ostream& operator<<(std::ostream& os, tcb* tcb) {
tcb->print(os);
return os;

}
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tp_t tcb::get_rt_c() { return rt_c; }

C.n time_io

#ifndef TIME_HH
#define TIME_HH

#include <iostream>
#include <chrono>

typedef std::chrono::system_clock::time_point tp_t;
typedef std::chrono::milliseconds ms_t;

std::ostream& operator<<(std::ostream& os, tp_t tp);
std::ostream& operator<<(std::ostream& os, ms_t msd);
std::istream& operator>>(std::istream& is, ms_t& msd);

#endif

#include "time_io.hh"
#include <iostream>
#include <chrono>

std::ostream& operator<<(std::ostream& os, tp_t tp) {
os << std::chrono::system_clock::to_time_t(tp);
return os;

}

std::ostream& operator<<(std::ostream& os, ms_t msd) {
os << std::chrono::duration_cast<ms_t>(msd).count();
return os;

}

std::istream& operator>>(std::istream& is, ms_t& msd) {
int ms;
is >> ms;
msd = std::chrono::duration<int, std::milli>(ms);
return is;

}
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D Appendix D: experiment code and exam-
ple data

D.a example hs task system

Global scheduling rate: 1
Global period : 10
Global lifetime: 20000
Global scheduling algorithm: EDF

Critical level: 1
Budget: 5
Max BE accesses: 1000
Task scheduling algorithm: EDF
t1 = (5, 10, 10) helloworld()

Critical level: 2
Budget: 5
Max BE accesses: 7050
Task scheduling algorithm: EDF
t2 = (5, 10, 10) helloworld()
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D.b useful zsh commands

#! /bin/zsh

# here are some useful zsh commands
# that will facilitate running experiments
# using the system described in this report

# misc
now-ns () { echo $((`date +%s`*10**9 + `date +%N`)) }
get-group () { awk '{print $5}' < /proc/$1/stat }

# this is cgroup 0
# a cgroup is a set of processes
# that can be stopped and resumed collectively
BE_PATH=/sys/fs/cgroup/freezer/0 # the cgroup path
STATE_FILE=$BE_PATH/freezer.state # and state: either FROZEN or THAWED
TASK_FILE=$BE_PATH/tasks # PIDs of processes included

# if cgroup 0 has not been created, use this to create it:
# the permissions are set so that you don't need root
# either to add/remove a process to the group,
# nor to have it stopped or resumed
be-init () {

if [[ ! -d $BE_PATH ]]; then
su -c "mkdir $BE_PATH; chmod a=wr $STATE_FILE $TASK_FILE"

fi
be-start

}

# manually set the state of the cgroup:
# normally, this will not be done
# but for debugging
be-stop () { echo FROZEN > $STATE_FILE }
be-start () { echo THAWED > $STATE_FILE }

# this runs a program on BE, and
# adds the PID to the cgroup
be-task () {

taskset -c $BE_CORE $@ &
local pid=$!
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echo $pid >> $TASK_FILE
}

# play a multimedia file with mplayer2(1) on BE
be-mp () {

be-task mplayer --ao=null --loop=0 -noconsolecontrols -fs \
$1 &> /dev/null

}

# memory stress(1) with N spinners of malloc(3)/free(3)
# on either core
cc-stress () { stress --vm $1 -t 60 }
cont-be-stress () { while (true) { be-stress 10 10 } }
be-stress () {

local amp=$1
local time=$2
local io=$((4*$amp))
local vm=$((2*$amp))
local vmb=$((128*2**((log($amp)/log(2)))))M
be-task stress --io $io \

--vm $vm \
--vm-bytes $vmb \
--timeout $time > /dev/null

}

be-movie () { be-mp ~/box/GGG_Rubio.mp4 }

be-kill () { killall -9 $@ 2> /dev/null }

#! /bin/zsh

## ~/.zsh/be-task

ps-core () {
local core=$1
ps -eo psr,pid,stat,comm | grep "^ $core "

}
ps-be () { ps-core $BE_CORE }
ps-cc () { ps-core $CRITICAL_CORE }

monitor-processes () {
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local core=$1
watch -t -n 0.1 "ps -eo psr,pid,stat,comm | grep '^ $core '"

}
monitor-be () { monitor-processes $BE_CORE }
monitor-cc () { monitor-processes $CRITICAL_CORE }

monitor-be-stress () {
watch -t -n 0.1 "ps -eo psr,pid,comm | grep -e '^ $BE_CORE ' | grep stress"

}

monitor-be-status () {
be-init
watch -t -n 0.1 cat $STATE_FILE $TASK_FILE

}

monitor-tty () { watch -t -n 0.1 "ps -eo tty,pid,comm,state | grep 'pts/$1 '" }
alias monitor=monitor-tty

#!/bin/zsh

MEM_EXP_RES=~/public_html/hs-linux/results/memory-experiment-tables.log

LISP_PATH=~/.emacs.d/emacs-init-cp

PROJECT_PATH=~/public_html/hs-linux
SRC_PATH=$PROJECT_PATH/src
RESULTS_PATH=$PROJECT_PATH/results

CONTENTION_RESULT=$RESULTS_PATH/cr.log

EXPERIMENT_PATH=$SRC_PATH/experiment
EXPERIMENT_SIGNAL_PATH=$EXPERIMENT_PATH/signal
EXPERIMENT_STATUS_FILE=$EXPERIMENT_PATH/status.txt

AUDIO_OUTPUT_PATH=$EXPERIMENT_PATH/audio-output

BE_PATH=/sys/fs/cgroup/freezer/0
STATE_FILE=$BE_PATH/freezer.state
TASK_FILE=$BE_PATH/tasks

#! /bin/zsh
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source ${0:h}/be-paths # ./be-paths

count-lines () {
if [[ $1 == "--clear" ]]; then

local dir=$2
for f in $dir/*(N); do

sudo chown $USER $f
echo -n > $f

done
else

local dir=$1
local file=$2
local file_path=$dir/$file
watch -t -n 0.1 "wc -l $file_path | cut -d\" \" -f 1; echo -n $file"

fi
}

clear-signals () { count-lines --clear $EXPERIMENT_SIGNAL_PATH }
clear-outputs () { count-lines --clear $AUDIO_OUTPUT_PATH }

count-signals () { count-lines $EXPERIMENT_SIGNAL_PATH $1 }
count-outputs () { count-lines $AUDIO_OUTPUT_PATH $1 }

count-signals-no-be () { count-signals no_interference }
count-signals-freeze () { count-signals throttle }
count-signals-do-not-freeze () { count-signals do_not_throttle }

count-outputs-no-be () { count-outputs no_interference }
count-outputs-freeze () { count-outputs throttle }
count-outputs-do-not-freeze () { count-outputs do_not_throttle }
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D.c zsh wrapper to run experiments

#! /bin/zsh

## other files:
## ~/public_html/hs-linux/src/times.el [1]
## ~/public_html/hs-linux/docs/report/report.tex [2]

## ~/public_html/hs-linux/src/compile_lisp
## ~/public_html/hs-linux/src/forever
## ~/scripts/a-level

source ${0:h}/be-paths # ./be-paths

monitor-experiment () { watch -t -n 0.1 "cat $EXPERIMENT_STATUS_FILE" }

## this crunches the tick readings into stats using [1]
## see: "the Linux and C++ clocks" in [2]
do-tick-stats () {

emacs -Q \
--insert $1 \
--script $SRC_PATH/times.el \
--eval "(tick-stats (* 1000000 $2))"

}

## for the -l switch to work
## hs must have root as owner
## and the SUID bit set (gulp)
## i.e.: sudo chown root hs
## sudo chmod +s hs
## it also works to use sudo here
## but if so do sudo warm-up
## so not to type the password
## thus affecting the experiment outcome
HS_OUTPUT=hs_output.log
run-hs () { $SRC_PATH/hs -s $1 -r -l -f > $RESULTS_PATH/$1/$HS_OUTPUT }
run-hs-p () { $SRC_PATH/hs -s $1 -r -l -f -P > $RESULTS_PATH/$1/$HS_OUTPUT }

# run hs with SCHED_FIFO -
# see "Linux real time schedulers" in [2]
# for this to work without sudo:
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# sudo chmod +s /usr/bin/chrt
# (this hasn't been used in the experiments so far)
run-hs-rt () { chrt --fifo 99 ./hs $@ }

run-all-experiments () {
run-contention-experiment # ~/.zsh/be-contention-experiment
run-memory-experiment # ~/.zsh/be-memory-experiment
run-task-system-experiment # ~/.zsh/be-system-experiment
run-linux-process-experiment # ~/.zsh/be-process-experiment
run-audio-experiment 10 # ~/.zsh/be-audio-experiment

}

#! /bin/zsh

source ${0:h}/be-paths

clear-exp-data () {
echo "no execution" > $EXPERIMENT_STATUS_FILE
clear-signals
clear-outputs

}

setup-panes () {
clear-exp-data

tmux split-window -h
tmux split-window -v
tmux split-window -v
tmux split-window -h
tmux select-pane -U
tmux split-window -h
tmux select-pane -U
tmux split-window -v
tmux split-window -h
tmux select-pane -U
tmux split-window -h

tmux send-keys -t 1 "monitor-experiment" Enter
tmux send-keys -t 2 "monitor-be-status" Enter

tmux send-keys -t 3 "count-signals-no-be" Enter
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tmux send-keys -t 5 "count-signals-freeze" Enter
tmux send-keys -t 7 "count-signals-do-not-freeze" Enter

tmux send-keys -t 4 "count-outputs-no-be" Enter
tmux send-keys -t 6 "count-outputs-freeze" Enter
tmux send-keys -t 8 "count-outputs-do-not-freeze" Enter

tmux send-keys -t 9 "monitor-be-stress" Enter

tmux select-pane -t 0
cd $SRC_PATH

}

#! /bin/zsh

source ${0:h}/be-paths # ./be-paths

now-ns () { echo $((`date +%s`*10**9 + `date +%N`)) }

clean-elisp () { make -C $LISP_PATH clean > /dev/null }

time-elisp () {
(($#)) || set ./process_lisp_time

clean-elisp

local start=`now-ns`
/usr/bin/make -C $LISP_PATH > /dev/null
local done=`now-ns`

local nanos=$(($done - $start))
echo "\t" $nanos "\n" >> $1

}

#!/bin/zsh

source ${0:h}/be-paths # ./be-paths

ce-hs () { hs -s base -r -Q }

ce-time-elisp () { time-elisp $CONTENTION_RESULT }
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ce-echo () { echo $@ "\n" >> $CONTENTION_RESULT }

run-contention-experiment () {
rm -f $CONTENTION_RESULT
be-init

echo "Be patient..."
ce-echo "* (compilation time without hs)"
ce-time-elisp

ce-echo "* with hs:"
ce-hs &
ce-time-elisp
be-kill hs

ce-echo "* with hs and the best-effort media player:"
ce-hs &
be-movie &
ce-time-elisp
be-kill mplayer hs

ce-echo "* with hs and stress:"
local system=$PROJECT_PATH/sys/base
local system_time_ms=`grep "Global lifetime:" $system | cut -d" " -f3`
local system_time_s=$(($system_time_ms/1000))
ce-hs &
be-stress 10 $system_time_s &
ce-time-elisp
be-kill stress hs

ce-echo "* with hs, stress and the BE media player:"
ce-hs &
be-movie &
be-stress 10 $system_time_s &
ce-time-elisp
be-kill stress mplayer hs

}

#! /bin/zsh
# systems: ~/public_html/hs-linux/sys/base-faculty-1
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# ~/public_html/hs-linux/sys/base-faculty-2
# results: ~/public_html/hs-linux/results/memory-experiment-tables.log

source ${0:h}/be-paths # ./be-paths

echo-and-file () { echo $1 | tee -a $MEM_EXP_RES }

exit-memory-experiment () { be-start; be-kill mplayer }

run-memory-experiment () {
rm -f $MEM_EXP_RES
be-init
be-start
be-movie &
echo-and-file "\\\tiny\n"
for system in base-faculty-{1,2}; do

echo-and-file "\\\subsubsection{\\\texttt{$system}}\n"
echo-and-file "\\\begin{tabular}{l l l}"
echo-and-file "supposed & actual & error ratio \\\\\\ \\\hline"
for budget in {1000000..1..-10000}; do

hs -s $system -i -h -r -Q -f -x -m $budget \
2> /dev/null | tee -a $MEM_EXP_RES

if [[ $? == 255 ]]; then exit-memory-experiment; return; fi
done
echo-and-file "\\\end{tabular}\n"

done
echo-and-file "\\\normalsize\n"
exit-memory-experiment

}

#! /bin/zsh

source ${0:h}/be-paths # ./be-paths

run-experiment () {
# result dir
local name=$1
local system=$PROJECT_PATH/sys/$name
local this_result_path=$RESULTS_PATH/$name
rm -rf $this_result_path
mkdir -p $this_result_path
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# Lisp file
local lisp_file=$this_result_path/lisp.log

# to-be stats files
local tick_times_file=tick_times.log
local stats_file=stats.log
rm -f $stats_file $tick_times_file

#### BE
be-init
be-movie &

#### critical core
time-elisp $lisp_file &
if [[ $# == 2 ]]; then run-hs-p $name
else run-hs $name
fi

# store results
local global_tick=`grep "Global scheduling rate:" $system | cut -d" " -f4`
do-tick-stats $tick_times_file $global_tick
mv $tick_times_file $stats_file $this_result_path
tail -n 1 $this_result_path/$HS_OUTPUT | \

cut -d ' ' -f 2 > $this_result_path/BE.txt
head -n 6 $this_result_path/stats.log > $this_result_path/stats.txt

# clean
be-kill mplayer
be-start

}

run-task-system-experiment () {
# system: ~/public_html/hs-linux/sys/base
# results: ~/public_html/hs-linux/results/base
run-experiment base

# ~/public_html/hs-linux/sys/long-ticks
# ~/public_html/hs-linux/results/long-ticks
run-experiment long-ticks
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# ~/public_html/hs-linux/sys/short-period
# ~/public_html/hs-linux/results/short-period
run-experiment long-period

}

#! /bin/zsh

run-linux-process-experiment () {
# system: ~/public_html/hs-linux/sys/base-p
# results: ~/public_html/hs-linux/results/base-p
run-experiment base-p t

# system: ~/public_html/hs-linux/sys/base-p-no-memory-budget
# results: ~/public_html/hs-linux/results/base-p-no-memory-budget
run-experiment base-p-no-memory-budget t

}

#! /bin/zsh

source ${0:h}/be-paths # ./be-paths

run-audio-experiment () {
# $1 is iterations per system (default: 1)
(($#)) || set 1
local its=$1

cd $SRC_PATH

clear-exp-data
be-init

local ni=$EXPERIMENT_SIGNAL_PATH/no_interference
local dnt=$EXPERIMENT_SIGNAL_PATH/do_not_throttle
local dt=$EXPERIMENT_SIGNAL_PATH/throttle
echo -n > $ni > $dnt > $dt

# ~/public_html/hs-linux/sys/base-audio-2
local system=base-audio-2
local system_file=$PROJECT_PATH/sys/$system

export AUDIO_OUTPUT=$AUDIO_OUTPUT_PATH/no_interference
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for i in {1..$its}; do
echo "no BE ($i of $its)" > $EXPERIMENT_STATUS_FILE
$SRC_PATH/hs -s $system -i -h -P -r -Q -p 2>> $ni

done

local sys_time_ms=`grep "Global lifetime:" $system_file | cut -d" " -f3`
local sys_time=$(($sys_time_ms*$its/1000))
local stress_time=$(($sys_time*3))
local stress_its=10
local stress_factor=1

repeat $stress_its be-stress $stress_factor $stress_time &
export AUDIO_OUTPUT=$AUDIO_OUTPUT_PATH/throttle
for i in {1..$its}; do

echo "tamed BE ($i of $its)" > $EXPERIMENT_STATUS_FILE
$SRC_PATH/hs -s $system -i -h -P -r -Q -f 2>> $dt

done
killall -9 stress

repeat $stress_its be-stress $stress_factor $stress_time &
be-start
export AUDIO_OUTPUT=$AUDIO_OUTPUT_PATH/do_not_throttle
for i in {1..$its}; do

echo "wild BE ($i of $its)" > $EXPERIMENT_STATUS_FILE
$SRC_PATH/hs -s $system -i -h -P -r -Q -p 2>> $dnt

done
killall -9 stress

echo "terminated" > $EXPERIMENT_STATUS_FILE

local result_file_name=audio_results
local result_file=${result_file_name}.png
dumpx $result_file_name
local inverted_file=${result_file_name}_i.png
convert -negate $result_file $inverted_file
mv -f $inverted_file ~/public_html/hs-linux/docs/report/pics/
rm $result_file

}
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D.d tick trace cruncher in Elisp

;;; -*- lexical-binding: t -*-

;; for a buffer/file of tick-time integers
;; one at each line
;; this Elisp number cruncher
;; is used to process the tick times
;; in order to find out how much
;; the ticks deviated
;; from the desired, fixed-interrupt rate

;; for the particular trace
;; stats are presented
;; as well as every drift from the specified ideal
;; as an indicator of an inexact clock
;; or if this needs to be further analyzed

(require 'cl-macs)

(defun get-variance (mean)
(save-excursion
(goto-char 1)
(let ((sum 0) (offsets 0))
(cl-loop
(let ((offset (thing-at-point 'number)))
(if offset

(progn
(cl-incf offsets)
(setq sum (+ sum (expt (- offset mean) 2)))
(forward-line 1) )

(cl-return) )))
(/ sum offsets) )))

(defun tick-stats (desired-tick)
(interactive "n desired tick: ")
(save-excursion
(goto-char 1)
(let ((sum 0) (offsets 0) (max nil) (min nil) )
(cl-loop
(let((t0 (thing-at-point 'number)))
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(forward-line 1)
(let((t1 (thing-at-point 'number)))
(save-current-buffer

(set-buffer (get-buffer-create "offsets.log"))
(if t1

(let((offset (- t1 t0 desired-tick)))
(cl-incf offsets)
(setq sum (+ sum offset))
(if (or (not max) (> offset max)) (setq max offset))
(if (or (not min) (> min offset)) (setq min offset))
(insert (format "%d\n" offset)) )

(progn
(goto-char 1)
(insert
(let*((mean (/ sum offsets))

(variance (get-variance mean)) )
(format
"readings: %d\nmean: %f\nvariance: %f\nstandard deviation: %f\nmin: %d\nmax: %d\n\n"
offsets mean variance (sqrt variance) min max)))

(write-file "stats.log")
(cl-return) )))))))))
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