Department of Information Technology
Uppsala University
December 13, 2012

Database Design

Assignments 1-3

Emanuel Berg

830622-1535

embe85730@student.uu. se
http://user.it.uu.se/~embe8573


http://user.it.uu.se/~embe8573

1 Assignment 1: Normalization

1.1 Current state

In the below subsections, an arrow indicates a fully functional dependency.

1.1.1 Book table

Title — {ISBN, Title, PublYear}
ISBN — {TitleNr, Title, PublYear}
Author — AuthorNat

This table is not in 2N F. For example, the attribute Title is dependent
on the primary key {TitleNr, CopyNr, Author}, but it is also dependent
on TitleNr and ISBN, so Title is not fully functionally dependent on the
primary key (or: “the determinant is not minimal”).

The problem with the book table is that the same data appear more than
once. If a book has more than one author, or if the library has more than one
copy of a book, multiple rows containing the same data will be created.

In general, this is bad design, but a specific problem that arises is that, if
data is to be changed, it must be changed at every occurrence. Apart from
this being tedious, some places may be overlooked by mistake (that is, it is
less secure).

Another flaw is that information about the author(s) should not appear in
the book table. This design makes the database frustrating to navigate.

1.1.2 Customer

CustomerNr — {PersonNr, Name, Address, Tel, NrBooks}
PersonNr — {CustomerNr, Name, Address, Tel, NrBooks}
Address <> Tel

The customer table is in 1N F only if addresses are considered atomic, oth-
erwise a complex attribute, say, “Residence”, could be used.

Moreover, the customer table is not in 3N F" as the non-key attributes Address
and Tel determine each other.



As for addresses not being 1NF', this is a purely technical problem that
has to do with the software that manages/implements the database. As for
Address determining Tel and vice verse, I don’t see why this should cause
any problems.

1.1.3 Loan

{TitleNr, CopyNr} — {CustomerNr, Date, BorrowerName}
CustomerNr <> BorrowerName

If dates are considered atomic, this is in 1N F. But, it is not in 3N F" as the
non-key attributes Customer Nr and Borrower Name determine each other.
Apart from a confusing design (the name of the borrower is a property of the
borrower, not the loan), the problem of redundancy arises as data appear
repeatedly in the database.

1.2 New design

1.2.1 Tables

Keys are primary or alternative.
author (Name, Book)

authorNationality(Author, Nationality)
Author — Nationality

book(TitleNr, ISBN, Title, PublYear)
TitleNr — ISBN, Title, PublYear)
ISBN — TitleNr, Title, PublYear)

customer (CustomerNr, PersonNr, Name, NrBooks, Address)
customerNr — PersonNr, Name, NrBooks, Address
personNr — CustomerNr, Name, NrBooks, Address

loan(TitleNr, CopyNr, CustomerNr, Date)
TitleNr, CopyNr — Customer, Date

residence(ResidenceNo, Street, StreetNr, Phone)
ResidenceNo — Phone, Street, StreetNr
Street, StreetNr — Phone, ResidencelNo



1.2.2 ER diagram




2 Assignment 2

2.1 Setup

whenever error continue;
set output off;

create databank dataBank;

create unique sequence number
initial _value = 0
increment = 1;

drop table manager cascade;
drop table customer cascade;
drop table location cascade;
drop table account cascade;
drop table transact cascade;

set output on;
whenever error exit;

2.2 Part 1l

create table manager
(id integer
constraint pk manager primary key
default next_value of number,
bonus integer default 0);

create table location
(id integer
constraint pk_location primary key
default next_value of number,
street varchar(20) default ’unknown’,
city varchar(15) references city (name));

create table customer

(id integer
constraint pk_customer primary key

4



default next_value of number,
customer_name varchar(20) default ’'unknown’,
location integer references location(id));

create table account
(id integer
constraint pk_account primary key
references customer (id),
balance real default 0.0,
credit real default 0.0);

create table transact

(id integer
constraint pk_transact primary key
default next_value of number,

account integer references account(id),

employee integer references employee(number) ,

amount integer default 0,

sdate date default current_date,

stime time default current_time):;

2.3 Part 2

insert into manager (id)
select distinct manager
from employee
where manager is not null;

insert into manager (id)
select distinct manager
from dept
where
manager not in (select id from manager)
and manager is not null;

2.4 Part 3

alter table employee
add constraint cst_manages
foreign key (manager) references manager(id):;



alter table dept
add constraint cst_head_of
foreign key (manager) references manager(id);

2.5 Part 4

update manager
set bonus = bonus + 10000
where id in (select distinct manager from dept):;

2.6 Part5s

insert into customer(id)
select distinct account from debit
where account is not null;

insert into account(id)
select distinct account from debit
where account is not null;

insert into transact (account, employee, amount, sdate)
select debit.account,
debit .employee ,
sale.quantityxitem. price ,
debit . sdate

from debit join (sale join item on sale.item =
item .number)
on debit.number = sale.debit ;

3 Assignment 3

Run this to set it all up:

whenever error continue;
set output off;

create databank dataBank;

create unique sequence number



initial_value = 0
increment = 1;

drop table manager cascade;
drop table customer cascade;
drop table account cascade;
drop table transact cascade;

set output on;
whenever error exit;

create table manager
(number integer constraint pk_manager primary key,
bonus integer default 0);

create table customer
(number integer constraint pk_customer primary key
default next_value of number,
name varchar(20) default ’unknown’,
livesOnStreet varchar(20) ,
city varchar(15) references city (name)):;

insert into customer (number) values (0);

create table account
(number integer constraint pk_account primary key
default next_value of number,
customer integer default 0 references customer (
number ) ,
balance real
credit real);

insert into account (number)
select distinct account from debit;

create table transact
(number integer constraint pk_transact primary key,
account integer references account(number) ,
amount integer
sdate date default current_date,
stime time default current_time,



employee integer references employee(number)) ;

insert into transact (number, account, sdate, employee)
select number, account, sdate, employee from debit;

insert into manager (number)

select distinct manager from employee
where manager is not null;

insert into manager (number)

select distinct manager from dept

where manager not in (select number from manager) ;

update manager set bonus = bonus + 10000
where number in (select distinct manager from dept);

3.1 Part1

select * from employee;

3.2 Part 2

select number, name from dept;
3.3 Part 3

select number, name from parts
where qoh = 0;

3.4 Part 4

select number, name from employee
where salary between 9000 and 10000;

3.5 Part s

select number, name, (startyear — birthyear) as
startyear
from employee;



3.6 Part 6

select number, name from employee
where name like "%son,%’;

3.7 Part 7

select number, name from item
where supplier in
(select number from supplier
where name = ’Playskool’);

3.8 Part 8

select item .number, item .name
from item join supplier

on item.supplier = supplier .number
where supplier.name = ’'Playskool ’;
3.9 Part9

select number, name, color
from parts
where weight > (select weight
from parts
where name = ’'tape_drive’);

3.10 Part 10

select pl.number, pl.name, pl.color

from parts as pl join (parts as p2 join parts as p3
on p2.name = ’‘tape._drive’
and p2.name = p3.name)

on pl.weight > p2.weight;

3.11 Part 11

select avg(weight) as avarageWeightOfBlackParts
from parts
where color =’black’;



3.12 Part 12

whenever error continue;
set output off;

drop view test_view;

set output on;

whenever error exit;

create view test_view as

select supplier .number, supplier.name, quanxweight
as totalweight

from supplier , supply, parts

where city in (select name from city

where state = "Mass’)

and supplier .number = supply.supplier

and supply.part = parts.number

group by supplier .number, supplier.name, weight ,
quan ;

select number, name, sum(totalweight) as totalweight
from test_view
group by number, name;

3.13 Part 13

whenever error continue;
set output off;
drop table cheap_item cascade;

CREATE TABLE cheap_item
(number INTEGER CONSTRAINT pk_cheap_item PRIMARY KEY,
name VARCHAR(20) ,
dept INTEGER NOT NULL,
price INTEGER,
qoh INTEGER CONSTRAINT ck_cheap_item_qoh CHECK (qoh
>= 0),
supplier INTEGER NOT NULL) ;

set output on;
whenever error exit;

10



insert into cheap_item

select x from item

where price < (select avg(price)
from item) ;

select *x from cheap_item;
3.14 Part 14

whenever error continue;
set output off;
drop table cheap_item cascade;

create table cheap_item
(number integer
constraint pk_cheap_item primary key
default next_value of number,
name varchar (20)
dept integer,
price integer
qoh integer constraint ck_cheap_qoh check (qoh >= 0)

)

supplier integer not null);

set output on;
whenever error exit;

insert into cheap_item (name, price, supplier)
select name, price, supplier from item
where price < (select avg(price)

from item);

select % from cheap_item;
3.15 Part 15
select debit, pricexquantity as totalprice from

sale join item
on sale.item = item .number;

11



3.16 Part 16

— delete from supplier
— where city = 'Los Angeles ’;

— This happens:
— MIMER/DB error —10106 in function EXECUTE

— Referential constraint SYSADM. FK ITEM_SUPPLIER
violated

— UPDATE/DELETE operation not valid for table
SYSADM.SUPPLIER

— That is, as there is a reference to the row in
another table ,

— 4t cannot be deleted.

3.17 Part 17

whenever error continue;
set output off;
drop view sale_supply;

CREATE VIEW sale _supply (supplier , item, quantity) as
SELECT supplier .name, item .name, sale.quantity
FROM (supplier join item

on supplier .number = item.supplier)
left outer join sale on
sale .item = item .number;

set output on;

whenever error exit;

select x from sale_supply;

12



	Assignment 1: Normalization
	Current state
	Book table
	Customer
	Loan

	New design
	Tables
	ER diagram


	Assignment 2
	Setup
	Part 1
	Part 2
	Part 3
	Part 4
	Part 5

	Assignment 3
	Part 1
	Part 2
	Part 3
	Part 4
	Part 5
	Part 6
	Part 7
	Part 8
	Part 9
	Part 10
	Part 11
	Part 12
	Part 13
	Part 14
	Part 15
	Part 16
	Part 17


