
IT 13 026

Examensarbete 15 hp
April 2013

Goal-Oriented Collision-Free
Schedule

Emanuel Berg

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Goal-Oriented Collision-Free Schedule

Emanuel Berg

The education of to-be physicians at Akademiska sjukhuset, Uppsala, includes practical
services. The students are divided into groups that each has its own goals. The goals
specify (1) what services that group's students should perform, and (2) for each
service, a minimum number of times each student should attend that service.

It is only possible to perform any service at certain occasions: each occasion offers
slots, to be filled by students. The occasions make up a calendar.

The challenge is to distribute the students over the calendar, so that the goal is
achieved for each student and service. No occasion is overpopulated, and no student
is due to attend two (or more) occasions that collide in time.

The algorithm to solve this sets up a table with occasions (expanded horizontally by
their number of slots) as the x-axis, and dates (expanded vertically by two: the day
parts) as the y-axis. Then, distribution of students is done top-down, left-right.
Collision is avoided by having students only appear once per row. Overpopulation
won't happen as the allocation of students is done explicitly to slots, not to occasions
in general.

MS Access forms make up the UI. My thoughts when I set them up was that each
form should boil down to a single purpose, but include everything to fulfill that
purpose (and nothing else). Also, I setup an intuitive flow of movements between
forms, and I made an effort to setup mnemonic shortcuts (and tab chains) as to
minimize mouse use.

Tryckt av: Reprocentralen ITC
IT 13 026
Examinator: Olle Eriksson
Ämnesgranskare: Olle Gällmo
Handledare: Per Söderberg

Contents

1 Introduction . 6
1.1 Services . 6
1.2 Occasions . 6
1.3 The problem . 6

2 The algorithm . 7
2.1 Input . 7

2.1.1 Calendar . 7
2.1.2 Students . 8
2.1.3 The maximum goals for each service type . . 8

2.2 Output . 8
2.3 What does the figure say? 8
2.4 A closer look . 9
2.5 Runtime technicalities 10

2.5.1 The first row 10
2.5.2 The font styles 11

2.6 After the algorithm . 11
3 Constraint programming . 12
4 Database theory . 14

4.1 History, purpose, and SQL 14
4.2 Normalization . 15
4.3 My experience . 16

5 AI, and greedy search . 17
5.1 A greedy implementation 17
5.2 The iterative algorithm (of this project) 19

6 Testing . 21
6.1 Good habits . 22

6.1.1 Code looks 22
6.1.2 Code habits 23

7 The code already there . 25
7.1 Hungarian notation . 25
7.2 Visual Basic for applications (VBA) 26

7.2.1 The MS Access editor 26
7.2.2 Shortcuts . 27
7.2.3 Editor looks 27

7.2.3.1 Highlighting 28
7.2.3.2 Comparison 30

8 A note on modularity: MVC 31
9 The UI . 33

9.1 How often will the UI be used? 33
9.2 Critical section . 33
9.3 The “UI UI” of MS Access 34
9.4 My thoughts when I did it 35

10 The forms . 38
10.1 Name issue . 40
10.2 Form by form . 41

10.2.1 Groups . 41
10.2.2 Group services 42

10.2.2.1 From group services to calendar . . . 43
10.2.2.2 Loss of course problem 43

10.2.3 Default services 45
10.2.3.1 cmdDelete 45
10.2.3.2 Group/default services interface . . . 46

10.2.4 Calendar . 46
10.2.5 Schedule . 49

11 Code notes . 51
11.1 Algorithm code . 51
11.2 Modules . 53

11.2.1 Text . 53
11.2.2 Time . 53
11.2.3 close and go 53

12 Summary and Conclusion . 54
12.1 The challenge . 54
12.2 The calendar . 54
12.3 The algorithm to solve it 55
12.4 The UI . 55

13 References . 56

1 Introduction

As part of their medical education at Uppsala University, the to-be physicians
perform services.

1.1 Services

To make sure that a student acquires a certain skill level within some field,
the student must carry out the associated service a number of times. This is
the minimum participation requirement of that service.

Although it is desirable that students exceed the minimum requirement (gain-
ing even more experience), there is also a maximum number of participations
defined for each service: more practice than that is deemed unnecessary.

1.2 Occasions

Typically, for each service, there are two occasions every day: one early, and
one late.

During such an occasion, a number of students can carry out that service.
In the lingo of this document, the number of students that can participate
at an occasion is the slots of that occasion.

1.3 The problem

We want to distribute the students over the occasions so that:

• each student carries out a service n times, so that smin ≤ n ≤ smax, for
all services s

• no occasion is overpopulated with students

• no student is associated with two or more occasions that take place at
the same time (in effect, at the same date and at the same day part)

6

2 The algorithm

An algorithm is executed to distribute the students over the occasions. The
algorithm is best described by an example:

rows Dates and day parts. The day part is either early or late, so a date
has two day parts.

columns Services and occasion slots.

cells Students. Students are represented as unique, sequential integers.

2.1 Input

The input to the algorithm consists of three parts:

2.1.1 Calendar

The first part is the calendar. In the above figure, the calendar is repre-
sented by the x-axis (the types of service occasions that students may be

7

present at) and the y-axis (the dates and day parts, when those occasions
take place).

Also included in the calendar are the number of students that may be present
at any individual occasion (the slots of the occasion, displayed below the
type span on the x-axis).

2.1.2 Students

The number of students that are to be distributed over the calendar is also
passed as input to the algorithm.

2.1.3 The maximum goals for each service type

What is not shown in the figure is that the algorithm checks that no stu-
dent exceeds the maximum number of participations defined for any service.
In that case, allocation of that student is not done, even if the student is
available at that time.

2.2 Output

The output of the algorithm is a distribution of the students over the cal-
endar. That distribution is shown in the figure above as integers. That
allocation is a potential schedule; however, depending on the student group
service set (the goals defined for the number of participations for each ser-
vice), the distribution may be discarded. If this happens, a messagebox will
tell the user that the goals were not possible to fulfill, and the user will be
asked to reduce the requirements for this particular student group.

2.3 What does the figure say?

Point a finger at any student (an integer in a table cell). Look left (all the
way to the date and day part) to see when that student is supposed to do
something. Backtrack right to the student. Look up (all the way to a service
type span) to see what that student is supposed to do.

With a finger at a student, look up to see in what slot a student is placed
in. Note though, from a human point of view, it does not matter what

8

student gets what slot. That data is only used by the algorithm as not to
overpopulate any occasion.

An x indicates that there isn’t that many slots at that occasion.

The figure also shows why the algorithm works: if each student occurs at most
once per row, there are not any collisions. (A collision is when a student is
scheduled for two activities, that occur at the same time. This should never
happen.)

2.4 A closer look

When reading this section, it is beneficial to keep an eye on the example
figure. Although the algorithm is not complicated at all, understanding will
come around ten times as fast, when simultaneously comparing text and
figure.

The algorithm’s start point is: the first student; the first slot of the first
service type; on the first date, early (if available, else late). Early is obviously
before late, and dates are sorted chronologically, as is intuitive. While the
remaining components – the students, and the service types and their slots –
are consistently enumerated (starting at one (1), incremented by one, so no
gaps), those integers are just handlers for the algorithm to iterate – in effect,
it doesn’t matter what student gets number two or three, what service type
is number one, etcetera.

This start point is the top-left cell in the figure, which shows the digit
one.

From here, the algorithm progresses forward in time, by step of day part.
If it is early, it gets late; if it is late, it gets early the next day. For each
step, student assignment is made, and the student counter is incremented by
one.

If the algorithm runs out of students, it simply loops back to the first (who
has the digit one). In the example figure, there are ten students. Already in
the first column, it is visible how the work student loops back to one.

This continues until time is up: either there is no “late” at that day, or, it
is late, and there is no tomorrow. (The former is what happens in the last
row in the figure.) When this happens, again, the algorithm loops back, this
time, in time, to where it started off. The difference is, it also increments the

service type by one.

9

Then, the algorithm simply do everything again, and it will proceed until
it can’t increment the service type anymore, because it is at the very last
service type. At that point, instead, it loops back the service type to one, and
increments the slot number. Note that, once that has been done, it is back at
incrementing service type, not slot, until the next time this happens.

If the algorithm can’t increment the slot number, because it is at the very
last slot number, there is nothing to do: if there isn’t a feasible schedule at
this point, for the current configuration (and this algorithm), there will never
be one.

2.5 Runtime technicalities

Student allocations in the figure are presented in different font styles. Also,
there is a row labeled first that is probable cryptic. This is metadata that
relate how the algorithm is actually implemented in VBA-code.

2.5.1 The first row

Student allocation integers flow downward. The first indicator is simply a
way for the computer to track where to start for each column. Once started,
there is not much of a challenge: just increase one for each step down the
ladder.

10

2.5.2 The font styles

The font styles indicate the mode of the algorithm, at the time that particular
allocation was made.

ordinary digit – 1 – This assignment has been made to reach the minimum

requirement of student 1 of the particular service type.

tilted digit – 1 – Ditto maximum. In the VBA-code, this is max forward.

bold digit – 1 – The algorithm previously refrained from making this allo-
cation, as the minimum requirement for student 1 of this service type
had been fulfilled. However, as, later on, there were (minimum) allo-
cations of other students (at least one such case) in this column, the
algorithm might as well backtrack and allocate student 1, as that op-
portunity had otherwise been wasted. (max backward)

underlined digit – 1 – If no minimum allocation has been done in an en-
tire column, this column is moved out of action, so its presumed first
can be used for better purposes in another column. (There is an ex-
ample of this in the figure.) But, at a later point, that empty column
was moved back to its original place and filled (for the maximum re-
quirement, obviously, otherwise none of this would have happened).
(max empty column)

2.6 After the algorithm

After the algorithm is executed, a test subroutine is invoked to see if the
minimum goals were reached for each student and service. A failure does not
mean that the algorithm failed – rather, the goals were set too high (and this
is communicated).

11

3 Constraint programming

Another way to solve this problem would have been to use the methods and
tools of a branch of computing known as constraint programming. To do so
would have meant a less “hackish” and frustrating implantation process; as
for the end result, it would have been more robust, and less error-prone.

The foundation of constraint programming is that a solution to a problem
is acquired not by algorithmic, step-by-step computation, but by search.
Instead of telling the computer “do this, do that, and when you’re done, we
have a solution”, a model is made that describes the problem scope; then,
constraints are posted that define what must hold for a solution; finally,
the computer invokes the generic search algorithm and, depending on the
problem (and the problem instance), delivers a solution (or, if desired, a
solution set). [14, p. 18]

As compared to the traditional algorithm approach, this method is more
flexible – if requirements were to change (which is very likely), instead of
re-writing the algorithm, the programmer would simply change a constraint
(for example, if the student participation requirement for some service was
reduced). Or, on the flip side of it, if the context was to change – say, it
became possible to carry out service at weekends – again, this would not
require an algorithm rewrite. Only, this time around, rather than changing
the constraints, the programmer would change the model (in effect, add a
Saturday instance to the calendar data structure).

It is less demanding (no algorithm design, implementation, and mainte-
nance), more robust (adding a constraint won’t mess up what has been setup
thus far), and less error-prone (without the re-writes, there isn’t any need
to test for, and correct, new bugs, possibly introducing new bugs, and so
on).

The most common example, often used to illustrate the principles of a con-
straint problem, is the Sudoku puzzle. There is a square board, and a span of
integers ([1, s], where s is the side of the board). From the integer pool, the
player places single digits at each square of the board. This is the model of
the constraint problem. Then, a set of constraints defines what distributions
of digits over the squares are Sudoku solutions.

This is all there is to it: there is no step-by-step algorithm what to do, and
every possible solution (if there are many) are (in this case) as valuable, pro-
vided they are solutions: they are in compliance with the stated constraints,

12

and do not violate the model. (Violating the model is, once implemented,
impossible: this is one reason the model is so important – it can be used to
impose implicit constraints, which will always hold but won’t require com-
puter resources.)

Here, I’d like to mention that the skilled constraint programmer may apply
several advanced methods to either reduce the search space, or impose a more
efficient search. Search space is represented as a search tree, so branching
is a key factor, as is traversal. The interaction between constraints, and
between constraints and the model, as well as the quality of the model itself
– everything matters to the outcome, so, although in general much easier
than explicit algorithms, at a certain level of complexity, even constraint
programming will pose a challenge. [4, p. 352] This could be compared to
SQL: with a sound database (the model), retrieving information is child’s
play. However, even so, given enough data, and complicated enough queries,
queries have to be optimized in order to get acceptable runtimes.

To summarize, constraint programming, from a user (not developer) per-
spective, focuses on the two endpoints: the model (the start) states formally
what is, and what can be done; the constraints (the end) state the definition
of a solution.

Constraint programming if often made available as a module to an estab-
lished, non-CP programming language. But note: that language doesn’t
have to be declarative — in fact, that’s what the module hopes to bring to
it. However, it helps if the language has OO support. C++, for example,
puts much more weight on modeling than does C. For sure, this will facilitate
incorporating a constraint programming module, that itself is model-oriented
(even more so than C++). [11, p. 439]

In sharp contrast to our solution to this brand of scheduling, as users of
a constraint programming tool, we’d not concern ourselves at all with the
actual implementation of the algorithm. Instead, search algorithms have
been generalized (and thus thoroughly tested) to encompass a huge domain
of problems, including, I think, this one. (At the time we started this project,
I was less familiar with constraint programming: I didn’t make the case that
we should use it.)

13

4 Database theory

The MS Access’ database belongs to the family of relational databases. A
relational database is a database in which data is stored flat, in tables (two-
dimensional matrices made up of rows and columns, although with some
special properties). [13, chapters 5 and 11]

A table is called a relation in database theory (though in MS Access, a table
is still called a table); likewise, a column is an attribute (a field), and a row
is a tuple (a record).

The tables of a relational database each describe different entity types. If
something doesn’t have such a table prototype, as for the database model,
it doesn’t exist. Each entity relates to other entities that are defined in the
same way. This is an intuitive model that corresponds to the way humans
perceive the outside world.

Although relational database tables are made up of columns and rows once
populated with data, it is only the composition of columns that actually
defines a table, and thus any possible entity instance. Just as the tables, the
columns have names; they also have metadata such as data type, references
to other tables, and more, to accompany them.

The rows of the tables are not rows in the sense that the columns are columns;
rather, they are bare placeholders for data (whereas the columns actually set
the domains for such data). That is, no metadata with respect to the model
accompany the rows.

4.1 History, purpose, and SQL

The father of the database relational model — to organize data in flat ta-
bles, that are interconnectable — is Edgar Codd. [7, pp. 377–387] Back
then, there were several solutions adrift as to how to store, modify and
retrieve data, and typically each such solution had its own adjacent data
definition/manipulation language. The simplicity of the relational model,
and in particular the flat data representation, paved the way for SQL as the
industry’s de facto standard language for database interaction.

14

4.2 Normalization

Database normalization specifies a ladder of normal forms. Each form im-
poses constraints on a single table. The forms are cumulative in the sense
that, say, the third normal form (3NF) implies the constraints of the pre-
ceding normal forms down the ladder (namely, 1NF and 2NF). [12, pp. 233,
237]

The constraints of the normal forms typically relate to the interdependencies
of the table attributes, and, especially, the set of attributes that constitutes
the primary and secondary keys of the table.

For a database to adhere to a certain normal form, all of its tables must
be (at least) in that form. But, even though normal forms are cumulative,
normalization is not done in steps: the 3NF is usually the point where there
is minimal data redundancy, and interacting with such a database does not
suffer from insertion, modification, or deletion anomalies — in effect, the
database is considered “normalized” at that point — and, if the database
designer can get there at the first attempt, all the better!

At first glance, it is tempting to compare database normalization with the
standards of a programming language or a class of operating systems. It
would seem that both normalization and such standards attempt to shape
up a technology that, left alone in the wild, has spun out of hands. How-
ever, this similarity is superficial. Normalization is much more abstract and
theoretical in nature, but has nonetheless had a huge practical impact. Stan-
dards, on the other hand, are often pragmatic: for example, several brands
of a programming language are present, and the standard attempts to unify
them, without too much provoking any of the factions (an example of this
is, curiously, SQL [13, p. 169]). In other cases, a “new” standard may be the
most inclined not to break any existing code that “adheres” to the previous
standard (where in fact, very few care about either standard one bit: an
example of this is C [5, chapter 12]).

15

4.3 My experience

During the course of this project, I didn’t feel the need for normalization in
the sense that I experienced anomalies interacting with the database. Rather,
dealing with the database tables, I was often confused as to what information
was expressed by a particular table. I often got the impression that tables
were used simply as placeholders for data, rather than expressing some piece
of information that could be stated explicitly. Although perhaps not the most
pressing goal of normalization, normalization almost always implies dividing
large tables into smaller, and this would have made for a more streamlined
and shaped-up database.

16

5 AI, and greedy search

A greedy algorithm is a search algorithm with applications not the least in
the field of AI, where it is referred to as hill-climbing. [10, p. 127] Like many
search algorithms, the greedy algorithm traverses a search tree where nodes
represent partial or complete solutions. In search of a particular solution (or
one that is better than the current), the algorithm makes moves from node
to node: what move to make (in effect, how to make that decision) is to a
great extent what distinguishes one search algorithm from another.

As for the greedy algorithm, it employs a system of rank (or score): of
its alternatives, it moves to the node with the highest rank. In general,
such an algorithm performs well, but in some cases it could fail, or end up
with a suboptimal solution, because of its limited view. It gets stuck at a
local maximum, and won’t reach (see) the global, optimal solution: a belt
of lower-rank nodes lies between the optimal solution and its current, local
maximum node. [8, chapter 16]

5.1 A greedy implementation

Let’s assume the same datastructures — the calendar — and the same stu-
dent representation (sequential, distinct integers, starting at 1). Also, assume
the same solution formalization: associations between students and calendar
(service) occasion slots. Third, assume the slots are simply iterated: only
now, for each slot, a greedy choice is made as to what student should fill that
slot. Now, how could that greedy algorithm have been implemented?

The first step would be to eliminate (from the entire group student set)
all students that are already doing something else at the time of the occa-
sion.

17

For each remaining (available) student, the greedy algorithm would calculate
a score based on certain conditions. For example, each students could start
with at score of 100. Then,

(1) the student is assigned the service [at least once] -7
(2) (for each such assignment) -2
(3) the student is assigned the minimum requirement -20
(4) (for each assignment above that) -5
(5) the student is assigned the maximum requirement disqualify

(6) the student is assigned one more shift today -10
(7) for each shift the same week, prior to today -4
(8) ditto month, prior to this week -2

The greedy algorithm would pick the student with the highest score. After
that, everything would happen again, only for the next slot (and so on).

This is an AI, greedy, search algorithm. It is AI, since the score system
emulates (or, rather, implements, with 100% consistency, and 0% flexibility)
how a human would think:

(A) “All students should at least try each service, even if
there isn’t time to acquire any real skill.”

(1)1

(B) “Students should get the same quantity of practice.” (2) (4)

(C) “Students should acquire skills, experience, and confi-
dence.”

(3)

(D) “Students shouldn’t do the same thing over and over
again, instead, it is preferable they recuperate and/or
assimilate what they have learned.”

(5)

(E) “Individual student activity should be distributed, so
the student is given time to digest his or her experience,
discussing it with fellow students, and so on, to be able
to perform better the next time around — also, that will
make for a more robust, persistent experience, that he
or she won’t instantly forget.”

(6) (7) (8)

1. This column indicates how a (human) thought has been formalized into a building
block of the AI algorithm (as shown in the previous listing). However, as for the AI
algorithm’s end result, it was my intention that all seven point deductions (as well as the
one disqualification) more or less should contribute to all five goals.

18

It is greedy: for each occasion, it picks the student with the highest score,
without considering how the next slots are to be filled.

Last, it is search as it selects one candidate from a set of possible stu-
dents.

Another AI way to solve this problem would be to define goals for what
makes up a solution, and then define a score system to rank the solutions.
The AI would train on randomized input sets: a high score would, in the AI
mind, make the steps just taken more probable to lead to a good solution,
and thus more likely to be employed (and the other way around for poor
schedules).

5.2 The iterative algorithm (of this project)

The iterative algorithm operates on the calendar slots on three nested levels:
the innermost level is time, incremented by day part; the middle level is
service type, iterated in the order that the services were setup in the group
service set; last, the outermost level is slot number, incremented by 1.

Iteration covers all slots: virtually, it transforms the calendar representation
into a sequence of slots. The first student–slot assignment made is student
number 1, who gets the first slot. Thereafter, for any slot, allocation is made
to the student with number s+1, if the student with number s was (or could
have been) assigned the preceding slot. If there are only s students, iteration
starts anew, and student number 1 is assigned.

So, there isn’t any search; nor are there any decisions that resembles human
(or machine) problem solving. Although assignments are made by increasing
student numbers (1, 2, 3, ...), that is not greed: those digits does not reflect
any properties of the students (most certainly, they do not indicate rank).
Instead, the digits are tokens to keep the students apart: the students could
have been designated A,B,C, ... just as well, the only requirement being that
the tokens are incrementable.

What’s more, the algorithm actually does consider the future. Whenever
a student has surpassed the maximum requirement, [s]he is not assigned a
service on that occasion. This is no different from the AI algorithm. However,
after the AI algorithm disqualifies the student, it picks another: the one with
the highest score, not disqualified. The iterative algorithm cannot do this;
that would lead to collisions later on. So, the slot is left empty.

19

The iterative algorithm is not an AI algorithm. It does not have any per-
sonality or behaviour that could be compared to how a human would cope
with any one instance of this problem. The algorithm is the result of a pro-
grammer (or perhaps even more so, a mathematician or logician) solving a
generic problem, by observing certain patterns, understanding them enough
to make them work to his or her advantage.

20

6 Testing

Testing is often put forward as a way to find bugs at an early stage. It
requires little effort and may pay off huge: not having to retract shipped
copies, or publish patches, and so on. [1]

Even more so, this holds when testing is compared to formal verification, the
more scientific (rather than engineering) approach, where a huge analytic
effort produces a result that is often hard to grasp. By contrast, testing will
reveal bugs that can be fixed instantly upon detection. Also, testing tests
the real thing. Formal verification requires a model which may be wrong. It
only proves that the model is correct, not that the application is.

The key aspect to testing is to actually do it. Already at that point, there is a
huge advantage compared to not testing at all. Beyond that, it is uncertain
that more refined test methods actually produce better results (in effect,
find bugs that slipped through the net the first time around). There is also
the volume factor: if a simple test method can be employed massively, it is
probably preferable to a more refined method, that can only cover patches
of the test field.

If a plethora of test methods are employed, each test should have an explicit
purpose, and/or a distinct test scope. For example, one test could enforce
that every line of code of the application is executed at least once. Depending
on the execution flow, this could require several invocations. To achieve this,
we again benefit from modular code: each function should be called, and the
return value fetched; each procedure should be invoked and brought to its
conclusion; and each interface should be covered in full, including optional
parameters. Beneath that, it gets more fine-grained, as the control logic —
iteration and branching — must be taken into account. Although probably
not necessary, a directed, cyclic graph could illustrate the execution logic and
flow. This test — that every line of code can execute without an error — is
intended to track bugs that are not syntactical, and thus will compile, but
once executed, will either bring a halt to the action or (worse) further down
the road produce a bogus result.

Another way to test focuses on input data. This method is tangential to
the notion of software as a black box mapping inputs to outputs. If volume
testing is possible, brute force with random input data shouldn’t be shunned
at. Input data must be valid, but mustn’t necessarily make sense: with
volume, in time, what makes sense will be tested as well.

21

If a more sensible approach is desired, testing could be based on input cases,
that are setup manually. With the student data of this student database, such
cases could be the empty set (of zero students), a singe student, all students,
and so on. Cases that might strike as unrealistic or even impossible should
not be avoided, as long as they are valid: on the contrary, those border cases
can reveal shortcomings that sensible inputs cannot, and indeed, the purpose
of testing is to break the examined application, thus revealing the bug that
made it possible.

As for this project, we didn’t do any intelligent testing. Whenever the exe-
cution of the algorithm was a success, we assumed that the schedule made
sense.

6.1 Good habits

Of course, better than finding and correcting bugs is never to introduce
them in the first place. Although near-impossible to achieve in full, sound
code and work habits will significantly improve the quality of any piece of
software.

6.1.1 Code looks

Sound code has as consistent style. This includes naming, indentation, and
spacing, and also applies to comments (if used). Such code is a lot more
readable, which will benefit not only future readers, but also the person who
is writing the code, at that selfsame moment, as well as in the later, debug
phase.

As a specific example, consider the implicit constructions that are possible
in some programming languages: for example, in C, they programmer can
disperse with the curly brackets that delimit scope, if the scope is but a single
line of code. While compact code is beneficial to the trained eye, such usage
is error-prone if the code is ever to be extended or modified (which is very
likely).

A consistent style will also increase productivity, as it will reduce the amount
of thinking when actually typing (as it is already clear how to write things,
the remaining concern is what to write). Consistency will reduce the number
of lookups into other sections of the code, as the programmer knows in what
manner variables, functions/procedures, and so on, are named: if the pro-
grammer knows him- or herself, his or her guess as to the name will in most

22

cases be correct. Such lookups are disruptive: even more than the actual
time loss to do it, they will drain the programmer’s energy as they imply a
visual and mental halt and re-orientation.

6.1.2 Code habits

If the programmer finds him- or herself habitually looking up things in differ-
ent sections of the code, this might indicate poor design and in particular lack
of modularity. Instead, the code should be the unification of self-sufficient,
but communicating, components, with clear interfaces (function/procedure
names that semantically describe what is done, with just a few parameters
each, all likewisely named). Apart from being much easier to actually write
than the other way around, obviously, such code is much less bug-prone. If
bugs nonetheless are introduced, detecting and correcting them — without
the introduction of new bugs — will be much easier if the code is modu-
lar.

To achieve a clear, modular code may be done in a classroom, where UML
boxes and arrows are drawn on whiteboards. However, there is another
approach, which in my experience is superior. Instead of trying to grasp the
big picture at an early stage, I build any piece of software bottom-up. If I
get the details correct, once all components are connected, the overall result
will be to my liking as well.

For example, if I find that a stack of preconditions accompany a function or
procedure, I change the data type of the troublesome parameter to a user-
defined type, that way making preconditions implicit by an explicit domain
infringement, that is defined but once. If there is an obvious domain infringe-
ment, but for practical reasons it is desirable to stick to a built-in data type
(for example, a signed real for a digit expressing the temperature in Celsius,
although anything below absolute zero won’t make sense) such input should
be validated first thing in the function or procedure body. Such a check re-
quires close-to zero coding effort, and its drain on run-time performance will
be unnoticable; on the other hand, it could expose a bug that would produce
bogus data and be very hard to find.

23

Code is written by humans, and read by humans. The compiler then trans-
lates the code, in steps, to machine instructions: near-unreadable, even to
programmers. This should encourage programmers to write code in the most
human way as possible. Naming, including interfaces, should reflect (even
describe) what is done to what pieces of information, not how this is achieved
from a programming language or otherwise machine point of view.

For example, say that a reference to a week day is needed. Here, it is tempting
to use an integer for the seven days of a any calendar week. However, that
is machine thinking. A programmer will start to wonder: “Is that 0 to 6,
or 1 to 7?” An American might think that the week begins with Sunday,
while a Swede won’t doubt that the week begins with Monday. Here, an
enumeration with symbolic constants is a more robust solution.

Speaking of constants, preprocessor constants should be avoided as they dis-
able type checking; symbolic, typed constants, on the other hand, should be
used excessively: never put the same digit (that quantifies the same thing)
twice is any piece of code. Several instances of hard-coded data will make
any change risky: at best, it will take time to find all instances; at worst,
not finding every occurrence will make for inconsistent data, or, a sloppy
search-and-replace can change some other data item, that denotes something
completely different, because it at the time (by chance) held an identical (but
unrelated) numerical value.

24

7 The code already there

The code at place when I started to work on this project was not professional:
the person who wrote it did not have a programmer’s education or any field
experience to make up for it. That said, I don’t want to be dismissive because
that person probably had some altogether different area of expertise. [s]he
should not be blamed, but rather the person who assigned him or her the
job.

During this project, I visited the hospital on countless occasions, and it is my
clear impression that people there were stressed out. One of the reasons is
that, instead of carrying out research and educating within their respective
fields, they were fiddling with computer systems. Although their computer
systems were more or less dysfunctional, even more so were their management
of human resources.

7.1 Hungarian notation

As an example, they use Hungarian notation2 for naming variables and GUI
elements. Thus, a string to hold a greeting is not named greeting, but
strGreeting. This is machine, not human thinking: besides, VBA is typed,
so a typecheck is performed anyway. Especially to those not used to it, Hun-
garian notation reduces code readability and is disruptive to workflow.

Decades ago, when computing wasn’t strong enough to support typed pro-
gramming languages, type errors were everywhere: perhaps then it was ben-
eficial to use Hungarian notation. Note though, this should not be confused
with today’s dynamically typed programming languages: they are so by de-

sign (for whatever reason), and to use Hungarian notation would probably
be to “reinvent the type”.

In MS Access (and the Visual Basic languages), I think the rationale for
using Hungarian notation actually has nothing to do with type. Rather, the
forms of both MS Access and VB projects tend to hold lots of GUI elements,
each of which has a global name. When writing code, those names could be
hard to remember; what’s more, as they aren’t declared in the code (but in
the “GUI GUI”), they aren’t readily visible. On the other hand, most often
the programmer will remember their types: button, text field, etcetera. If

2. Wikipedia, Hungarian Notation, accessed Mars 4, 2013:
https://en.wikipedia.org/wiki/Hungarian_notation

25

so, and if Hungarian notation is used, the programmer could simply (for a
button) type cmd, and the autocomplete function of the MS Access or VB
editor would present viable alternatives. (As for me, I think autocomplete
popups are disruptive and I disabled them first thing.)

7.2 Visual Basic for applications (VBA)

If a programmer is asked what [s]he thinks of VBA, [s]he will often express
dislike and even ridicule. Actual experience is not a prerequisite for this from-
the-holster reaction. But, as for me, if I only had to assess the programming

language VBA (leaving aside the rest of MS Access) I’d say this reputation
is unfair. Probably, those preconceived notions are due to legacy implemen-
tations of Basic, which lacked a lot of features that had to be made up for
by spaghetti code, virtually making the code impossible to maintain, reuse,
or extend. However, those features are available in VBA: explicit goto is
not needed, and it is possible to write modular code. Also, for those inclined
to C or Lisp, the syntax of Basic (including that of VBA) is cumbersome:
while true, that’s aesthetics. Last, VBA is Microsoft, it is proprietary and
close source, and it is not portable. Personally, I wouldn’t recommend VBA
to anybody (for those and other reasons), but the programming language is
not the reason (or a valid excuse) for any crude application. Also, VBA is
well integrated — almost too well so — with the UI editor and the database
parts of MS Access.

7.2.1 The MS Access editor

Instead, my main concern is the built-in editor used to write VBA code.
That editor is somewhat configurable, but not programmable; compared to
a professional editor, it is a toy. Mastering a professional editor, and to fully
configure it down to one’s last preference, is a process of hours of work and
years of active use. But, once done (or proximately so), degrading to the likes
of the MS Access editor is to experience a distinct, tactical deficiency.

26

7.2.2 Shortcuts

What I missed the most from my regular editor (in very stiff competition)
were numerous shortcuts to navigate the cursor through code: forward-word,
backward-word, beginning-of-line, end-of-line, and so on. Those short-
cuts have since long entered my muscle memory; I invoke them without
thinking. [6, pp. 20, 22] Although a small subset of the shortcuts I use is
actually present in the MS Access editor, those are bound to different keys:
even though I adapted, in particular, it annoyed me to have to reach for
the cursor keys instead of the much better solution that involves keys in the
middle of the keyboard.

Some functionality that I’m used to from my regular editor is indeed present
in the MS Access editor, only not entirely so, or in a somewhat other fashion
(typically, those were bound to different shortcuts, as well). This made for
confusion and misunderstandings. In general, nobody should be made to use
any other than his or her preferred tools, and even more so in computing
where portable and tool-independent alternatives are everywhere.

7.2.3 Editor looks

Visually, the MS Access editor is fairly configurable. The Windows color
scheme can be reversed to produce a black background. A black background
will reduce eye strain, as less light enters the eyes. But, unlike the light of
the sun, the light from a monitor conveys information that must be decoded
in/by the brain. If a programmer experience eye discomfort (or even pain)
from staring into a monitor for too long (while maintaining a high degree of
concentration), [s]he is virtually incapable of carrying out any work. Also, the
use of large, clear fonts, as well as the elimination of any visual noise (redun-
dant decorations, or a blinking cursor) will help. Last, the use of a projector
(instead of a monitor) is a huge improvement, due to the increased font size
and eye distance. Also, straight, upright ergonomics will “fool” the body and
mind of the programmer that [s]he is alert, aware, and confident.

27

7.2.3.1 Highlighting

The purpose of syntax highlighting is to reduce reading, and increase see-

ing.

Highlighting can be defined as regular expressions, and implemented in much
the same way as the front-end of a programming language compiler, with a
lexical analyzer. [3, chapter 12]

The most important aspect of highlighting is to actually have it, in the editor.
Once there, it can be refined, but the gain of any such second, third, and
fourth steps won’t be comparable to the first, to get it.

How will an individual color highlight of a word affect the human eye’s ability
to make out that word? An experiment should include the black background
color, as it in large is the contrast that makes a word stick out.

Also, to what extent is the eye capable to appreciate different shades of the
same color? For example, several shades of green can be used to convey
lots of information, but it could just as well be either unnoticable, or worse,
confusing (the programmer expects green to be one thing, only sometimes,
“the same” green is something else).

Here, note that the eye is better at detecting green than red and blue, due to
a more sensitive cone for green (than those for red and blue) at the back of
the eye. [2, pp. 18, 19] Perhaps, this is a measure of evolution, that helped
paleo-men in search for food.

There is also the human emotional response to a color. Red sticks out, but
perhaps overly so – it would indicate (in a programming setting) an error, or
some danger.

For sure, comments should have a color that puts them apart from every-
thing else (that is, code). To put comments in a medium-bright red would
probably achieve this, as the code highlight probably doesn’t use red that
much. However, apart from the danger of making the comments stick out
to much, and emotionally conveying errors or dangers, there is the habit of
some programmers to comment out code. [9, p. 86] So, the comment high-
light mustn’t only stick out, it must also be less visible (or less instantly so)
than normal code (that isn’t commented out), because commented out code
is intently put out of action, and shouldn’t be considered until it, possibly,
is brought back to life at a later stage.

28

As a rule of thumb, highlight (mainly colors, but also including creative use of
fonts, sizes, and styles – for example, the boldface) should not make a single
word stick out in a paragraph (or code block). Intuitively, the reader should
look at the beginning of any paragraph, as if [s]he were to read it. However,
when the reader naturally (by reading) gets to a particular word, sensible
formatting will convey extra information and make for a more pleasant, less
bumpy, and thus more efficient reading experience.

Highlighting a programming language should focus on what are keywords
of the programming language, and what are data, branching conditions,
etcetera, that is specific to the current application. That way, the program-
mer will instantly see what to possibly change — for example, in search of a
bug — because, obviously, [s]he isn’t going to change phrases that are fixed
constructs of the programming language itself. Only rare constructs should
be made to really stick out: for example, preprocessor directives in C.

29

7.2.3.2 Comparison

I include below a screenshot of the optimal programming interface I found
(or, more precisely, setup), so far. Note the minimalist, tabbed terminal; the
black background; the large, clear, and monospace font; the highlighting; the
lack of redundant graphical elements (including scrollbars, and the mouse
pointer, as the mouse isn’t used); and the block, non-blinking cursor. Al-
though I could make for a pleasant ride in MS Access, there is no way I (or
anyone else) could make it look like the screenshot below. For comparison, I
include a screenshot from the MS Access 2010 editor. While I used the 2003
flavour, the GUI looked almost identical.

30

8 A note on modularity: MVC

When developing any computer system, it is often an advantage to isolate
the UI from the data, and the data from the execution logic (whatever the
program does to the data). Intuitively, this is not hard to grasp: the UI
fetches the user’s intentions, and passes them on; the computation part of
the program alters the data accordingly. When done, the UI is notified there
has been a change to the data, and it assesses the data anew to reflect those
changes.

Depending on the UI (and the overall system), the UI may show actual data,
and/or disable/enable GUI elements (like buttons) to reflect the new state.
In most cases, the UI can simply reassess the whole data set and redraw
whatever information and interaction options it presents: from an imple-
mentation point of view, it is easier to have the UI concerned with states,
and not the transitions in between. Conveniently, this will be transparent
to the user, who will only take notice of the subset of information that has
changed in response to his or her most recent action.

As for the computation logic (the algorithms to add, modify, and delete
data items), it should present an interface to the UI based on procedures,
whose names in plain English semantically describe how they affect the data
(or rather, the information the data represents). That way, the program-
mer can setup the UI to hook onto those procedures with interactive GUI
elements.

Last, the data should only be concerned with itself: it should specify the data
types of data items, and, when appropriate, further infringe their domains.
Domains may be expressed extansionally (lists with all possible values) or
as constraints: for example, a signed decimal number (a real) to express
temperature in Celsius may be stated invalid for values less than -273.15.
Here, depending on the RDBMS (or the otherwise underlying framework),
if a UI textbox is hooked to such a temperature data item, and the user
attempts to set the temperature to, say, -300, this overstep can be communi-
cated immediately to the user, with no setup whatsoever required from the
programmer.

For those interested in Computer Science theory, this trinity is a brand within
the modular paradigm: it is called Model-View-Control, or MVC for short.
During my work, I can’t say I adhered to this school with anything but
intuitive rigour. However, I was aware of what problems might arise: in the
manual part of this report, I mention whenever poor modularity is obvious

31

(almost all such cases were hard-coded, and/or “hard-layouted” database–
UI intersections). Again, those are only the obvious breaches; were anyone
to extend or modify my work, I wouldn’t be astonished if they encountered
unexpected problems, wholly or in part because of poor modularity.

An even worse issue (that is more plenty, and rooted) is all the recordsets
used as intermediate representation for the database tables, in the VBA code.
In the relational data model, in terms of their data, relations (or tables) are
sets of tuples. By definition, sets are not sorted: {a, b} = {b, a}. But, the
algorithm that I implemented is all about iteration on sequences. So, in-
stead of exclusively using SQL to interact the database, I often resorted to
the VBA recordset datatype, including data extraction, explicit testing, and
more. Problem is, this data migration back and forth between different rep-
resentations makes for an error-prone system, whose behaviour is difficult to
survey without extensive testing. True, there is explicit iteration in SQL (at
least, in some SQL dialects): the use of cursors. However, in general, I don’t
consider cursors a that much better solution than my recordset workaround,
and in one respect actually worse, because SQL should be declarative and
data oriented, and not procedural (at least not habitually so).

32

9 The UI

9.1 How often will the UI be used?

The importance of a UI is to a great extent proportional to how often the
application (and thus its UI) is used.

If the application is used every day, the UI should just be a bulletin board
of text fields and buttons (all with keyboard shortcuts) to invoke the ap-
plication’s services. In such a case, it is important that no time is wasted
switching back and forth between windows (computer delay to re-draw, hu-
man delay to re-orient). There is no need for any such visual and/or logical
groupings: as the application is used every day, the user will be intimately
familiar with it after but a few days. Instead, the GUI elements should be
placed wherever they fit the best in terms of space, so as to be able to show
as many of them as possible at the same time, without intervention.

Also, if the UI is used every day, any verbosity (such as button labels) is
not only a wasted effort, but counter-productive: a button should be labeled
B instead of Break (or, even better, be given a sole symbol to express its
purpose), in order to free space, and reduce reading. Although the user very
soon won’t actually read “Break”, the word will still be there, distracting the
user from, say, a text section with messages from the application, text that
the user is supposed to read.

9.2 Critical section

If the situation in which the UI is used may impact people’s health there
shouldn’t be a UI at all: there should be a one-to-one correspondence between
a physical device and the desired computer (or otherwise machine) response.
A fighter pilot doesn’t have time to “think”: his body and mind must be
one; and, his aircraft must respond instantly to the lightest leaning to the
throttle. Also, in the flight control tower — although their most important
“tool” is probably the tower’s window — during a crisis, any desired surplus
information must be readily available (at most) by the turn of a head.

33

9.3 The “UI UI” of MS Access

The MS Access all-in-one development environment includes a drag-and-
drop, WYSIWYG UI editor. This editor is similar to the one that accom-
panied Microsoft’s flavour of the Basic programming language for Windows
development, Visual Basic.

It works as follows: In order to add a GUI element, such as a button, the
UI designer chooses that item, then drops it wherever on the form [s]he sees
fit. The button is automatically given a standard, unique name; however,
as this name does not reflect the button’s intended functionality, it should
be changed first thing. After that, the UI designer can change the button’s
visual properties, such as size, alignment, etcetera; also, the UI designer sets
the button label, and associates it with a keyboard shortcut. Last, double
clicking on the button makes the UI editor jump into MS Access’ code mode,
where a stub procedure has automatically been added to the form’s associated
code. This procedure catches the event that is considered the most intuitive
way a user can interact with the GUI element (for a button, a left click).
The UI designer, suddenly elevated to programmer, can now write whatever
code [s]he wishes to be invoked at such an event.

Although I personally prefer to work exclusively with text, this is certainly
one way to do it: it makes for rapid development, and it is consistent with
everything else in Windows, both visually and in terms of workflow. But, I
can see a couple of drawbacks as well.

First, such a UI is obviously not in the least portable: the UI created will
exclusively be a Windows one. No doubt, this is not considered a drawback
by everyone, but on the contrary an asset.

Second: A GUI item is placed in a form on the basis of absolute position
(for example, in points). Consequently, it won’t look the same on different
computers (with different screen resolutions, window manager settings, and
so on; not to mention if the window is sizable). Although I can think of
workarounds — for example, make a text field as wide as the entire form,
and then center-align the text — even so, this is nowhere near the abstract
window toolkits available for mature programming languages (and even in
web layout, with CSS).

34

Also, absolute layout is inflexible: if ever an element unsuspectingly has to
be added to what the UI designer thought was a fixed layout, instead of
logically inserting it (“in the middle, right next to...”), it has to be put there
manually, in worst case requiring moving everything already there to make
room.

Last, the level of integration in MS Access sometimes works to the disadvan-
tage of the developer. On numerous occasions, I browsed the code in search
of a bug, only to later find out that some GUI element was the source of the
malfunction (or, some inconsistency relating to the database, for that mat-
ter). The traditional development cycle — write code, execute (test), debug,
and so on — is a blurr in MS Access, and this made for a lot of debug time,
not knowing even where to look for a bug. For sure, MS Access development
actually encourages a cocktail of GUI, execution logic, and data: a reversal

of the MVC approach.

9.4 My thoughts when I did it

This project is part of a larger database interaction system, which was already
employed when I started. By and large, there weren’t any options as to what
tools to use or what interface to implement. Nonetheless, MS Access isn’t
inflexible (apart from not being portable), and I managed to put my stamp
on the interface.

The number one advantage with a text based interface is that the user won’t
have to move his or her arm back and forth from the keyboard to use the
mouse. The number two advantage is that the user won’t have to take aim at
graphical elements on the screen, squeezing his or her eyes to strike a target.
Not having to do that will make for a pleasant, smooth mental-physical
workflow, one that will maximize productivity and minimize frustration, thus
minimizing the energy drain as work progresses.

As it happens, those two advantages may be somewhat replicated in a Win-
dows GUI by taking a few simple steps. Most important, all buttons should
have keyboard shortcuts.

One shortcut type is the combination of Ctrl and a letter key. Such a
shortcut can be setup mnemonically, as in Ctrl-F for find (perhaps equivalent
to clicking the button with a magnifying glass or a pair of binoculars as its
icon). If a mnemonic command can’t be found, any shortcut will do. If the
application is used on a regular basis, it doesn’t matter what is mnemonic and

35

what is not: those keystrokes will soon enter the muscle memory, bypassing
any such considerations in the brain.

The other shortcut type offers shortcuts that relate to the text of, say, a
button. In MS Access, this is set up by placing an ampersand (&) before the
desired letter. The button is thereafter reachable by use of the Alt key. Such
shortcuts have the advantage that they are always visible to the user: they
are self-documenting.

However, both shortcuts variants suffer from the MS Access menu, which
takes precedence, thus making it impractical to use a large subset of possi-
ble shortcuts. I suspect it is possible to workaround this with event driven
procedures in the form’s associated code, thus bypassing the GUI altogether.
However, I didn’t put any effort on this as I didn’t have that many buttons
anyway.

Further, there is a unique, default status that can be assigned a button:
in that case, clicking the button is equivalent to hitting the Return key on
the keyboard. While it is intuitive, and common in many Windows (and
other) applications, hitting Return (with the right little finger) is actually
inferior to hitting an Alt keystroke (sliding the left thumb left, holding Alt,
then hitting a letter key with the right hand), because in that case neither
hand move from their correct positions. Also, the default assignment could
be a source of confusion since it is not always clear what the “default” action
is.

Last: The possibility to reach GUI elements by tapping the Tab key (to travel
in the reverse direction, hold the right Shift key at the same time). This is
especially useful when entering data in text fields. It is beneficial if the field
text gets marked whenever the text field gets focus; that way, the user may
just tab to the intended field, enter whatever text, and tab away.

In order for tabbing to work, a property called tab stop must be enabled for
any element that should be reachable this way; also, a tab order must be set
so the cursor won’t jump all over the place but instead jump between the
textboxes (and buttons) in an intuitive way. MS Access is capable of creating
such an order based on the locations on the form of the interactive elements;
however, this order may not be what the UI designer had in mind, in what
case setting it up manually can be a tedious (but worthwhile) task.

Apart from setting up a keyboard interface, there wasn’t much to it. The
interface of this application is not intended to be used frequently, so there
wasn’t any need to cramp everything together. As a rule of thumb, I made
each form do one thing; everything related to that thing is accessible in that

36

selfsame form, and there isn’t anything unrelated to that one task. Also,
there is some automatic jumping between forms that was set up programati-
cally. Such a feature is annoying when malfunctioning (switching forms when
not supposed to, or switching to the wrong form), but I felt confident it would
only happen when intended, and correctly whenever so.

37

10 The forms

My involvement in this project included setting up five forms: four to setup
and execute the scheduling algorithm, and one to produce fine-looking doc-
uments showing the final schedules.

In MS Access, those documents are called reports; they are to be made avail-
able on course homepages, or handed out staff members, teachers, and stu-
dents. In MS Access, there is a GUI editor that will both layout reports, and
populate them by generating SQL-queries. So, the fifth form is actually an
interface to such reports, which I also set up.

When we started this project, we believed that the algorithm presented the
big challenge. But, although the algorithm indeed is the most advanced part
of the project, once defined pen and paper, it did not take long to translate
into code.

Instead, countless of hours were spent on the forms. The forms were not
difficult in an analytic sense; rather, trouble arose making them work in a
smooth fashion, all the while correcting bugs as they became apparent.

When running the application, only one form is visible (in fullscreen) at a
time. All other forms are inaccessible to the user, because they are made
invisible on all exit points. This is mostly to make the application foolproof,
but also so that checks won’t have to be made as to what is consistent in
one form, with regards to data in another. It is like climbing a ladder: the
steps below can’t be broke, because then the climber couldn’t have reached
the current height.

38

The figure below shows user navigation between forms, implicit jumps, as
well as data interaction.

balloon Forms

solid line The user can navigate between forms (typically, a button click in
one form brings up the next in line)

dashed line The user can navigate between forms, under certain conditions:

1. From the Group form, it is possible to move to the Calendar
and Schedule forms of a certain group if such data exists. If the
algorithms hasn’t concluded successfully for a group, that group
doesn’t have a schedule; as for the calendar, that is populated
from the Group services form.

2. From theCalendar form, movement is triggered by the execution
of the algorithm. If it was a success, the user is taken to theGroup
form; on failure, to the Group service form.

dotted line If changes to data are made in one form (at the arrow’s base),
data in another form (at the arrow’s tip) could get obsolete and, if so,
that data must be removed. There isn’t any check to see if this actually
happened: the whole range of (possibly) affected data is erased, to
enforce consistency. This can cascade.

39

10.1 Name issue

A matter of confusion is the names of the forms and their associated tables.
I nicknamed them by function, ignoring their database names.

form groups

name F PracticeStartsCreateIn

table Tv PracticeStarts

selection CourseIdNo

form group services

name ass services new

table ass course specific services

selection cmdShowServices

form default services

name ass service defaults

table ass service types

selection none

form calendar

name F DesignPracticePositions

table Tp ClinicalPassCalendar

selection PracticeStartNo

form schedule

name F MakeClinicSchedules

table Tv PracticeStarts (read only)

selection PracticeStartNo

40

10.2 Form by form

Those are the forms:

10.2.1 Groups

The first of the five forms that the user will see is the group form. Prior to
displaying this form, a course has been selected by the user.

Two student groups take part in each course. The groups are distinguished
by location.

Each group has distinct service and occasion sets. Schedules are group dis-
tinctive as well. Only, as part of the same course, the groups share the
time frame of possible activity (in effect, their first and last date of their
calendars).

41

Possible navigation paths from the groups form:

1. Edit services (if any; else, click to setup)

2. Edit calendar (if there is one; else, setup from services)

3. Show schedule (if there is one; else, run algorithm from calendar)

10.2.2 Group services

Each student group has a service set that defines what services the students
of that group are expected to perform.

Also, for each service, the minimum and maximum numbers of participations
are defined. The minimum is what is required for each group student; if the
algorithm cannot achieve this for one or more students, no schedule is created.
The maximum limit is not that dramatic; rather, it tells the algorithm when
to refrain from associating a student with a service, even if there is such a
possibility.

In addition, the group set includes, for each service, a benchmark number of
student slots for a typical occasion. This shorthand facilitates the creation of
the calendar: the number of slots can later be changed for any (individual)

42

occasion. Probably, the number of occasion slots of a service will not differ
that much (if at all). In any case, it is preferable to first setting them all to,
say, five, and then to change one or two occasions to, say, two, rather than
setting the slots of each occasion one by one.

service set changed is invoked whenever there is a change to the the group
set carried out by the user in this form.

If the group set is changed, the schedule and the calendar become outdated
(if they exist). This subroutine checks if there is any such data: if there is,
it is erased.

The invocation of service set changed must be explicit as there are not
any RDMS-style trigger functionality in Microsoft Access 2003. For this
reason, all changes to the group set should be carried out in the form, and
not directly in the actual table.

update all: This brings the form up-to-date visually, to reflect changes in
the group set. Also, cbAddService is updated to list only those services of
the default set currently not in the present group set.

10.2.2.1 From group services to calendar

cmdPopulate Calendar: Clicking this button will take the user from the
group services to the calendar. During this transition, the calendar will be
populated. The time frame of the calendar is here determined by the group.
The services present in the calendar (and the suggested number of slots for
each occasion) are determined by the group services (that is, what was set
up in the form just left behind).

Here, a check could be made not to add occasions that take place on Swedish
holidays. As it is now, those are added and must be deleted manually. On
the bright side, Saturdays and Sundays are excluded.

10.2.2.2 Loss of course problem

check set args: This function is a GUI hack. In order to do almost any-
thing in the service form, the student group id must be known. That id is
PracticeStartNo.

The form is populated from the ass course specific services table. Each
record in that table contains a PracticeStartNo field, and the subset of all

43

such records with a particular number in that field constitutes the service set
for that student group. However, if there is not any data as to that group ser-
vice set (that is, not a single record with a corresponding PracticeStartNo),
the PracticeStartNo cannot be determined that way.

To circumvent a crash in such a case, the PracticeStartNo is also sent as an
open argument, whenever there is a transition to this form (by a button
click) from another form. If the PracticeStartNo is lost, this function will
use the open argument instead, destructively updating its argument to this
value. However, this may also fail: if the service form is opened from the
MS Access menu, there is no open argument!

If those two misfortunes coincide, there is nothing to do. This is communi-
cated to the user. Also, the function returns False to tell whatever piece of
code that invoked it, ”there is no point proceeding as we cannot identify the
student group”.

44

10.2.3 Default services

The default service set is not related to a specific group. As the algorithm op-
erates on such a group, the default set is not used by the algorithm. Instead,
it is a shorthand to facilitate the definition of group service sets. Typically,
those do not differ that much; if they do, the default set may still be a good
starting point.

10.2.3.1 cmdDelete

The if statement requires some explanation. In the default form, the way
for the user to add a new default service (that is, a new record to the table) is
to start typing in any of the blank textboxes at the bottom of the form.

45

This is all well and good apart from the delete button to the right of each
service row: unfortunately, that button appears next to the empty ”add new
record” textboxes as well. Clicking it doesn’t make any sense, but if the user
clicks it anyway (as a mistake or out of curiosity), the if statement is there
to make sure nothing happens. (Obviously, this solution is a hack. Does it
fully remedy the problem?)

10.2.3.2 Group/default services interface

cbAddService: If there are any services in the default set not in the group
set, those are listed in this combobox. If selected, a service will be added to
the group set along with the minimum, maximum, and slots default values,
as defined in the default set for that service.

cmdDefault: This will clear the current (if any) group set and replace it with
a set identical to the default set, if the user wishes to start anew.

10.2.4 Calendar

The calendar is a set of occasions. It is group specific.

46

An occasion is located in time by date and day part: for example, 2011-01-05,
early. Also, on a specific occasion, a number of students can carry out a
particular service.
The definition of an occasion is:

1. date (2011-01-05)

2. day part (early or late)

3. service (eye surgery)

4. maximum number of students that can participate (slots; e.g., 5)

In terms of technology, the occasions are records in the calendar table.

cmdDeleteDay: This is typically used to remove holidays (e.g., New Year’s
Eve) when there isn’t any activity. If there are an early and a late entry
of that day present in the calendar, both will be removed if there is a click
on either ”delete day” button. (The Swedish label on this button is Hela
dagen.)

cmdDeleteDayPart: This is like the ”delete day” button, only it will only
delete that particular day part. (Del av dag)

cmdRunAssociationAlgorithm: First thing, a check is made if there already
is a schedule for the group. If so, a message box will ask the user to confirm
that the old schedule should be removed, and the algorithm run anew. (If
there is no schedule, the algorithm is simply executed.)

After the execution of the algorithm, analyze fallout is invoked.

47

show and hide services: The purpose of this is to hide and show slots
boxes and service labels according to what services are intended for that
group (which is determined by the group service set). Two loops accomplish
this:

1. A While loop to make the boxes visible, and to set the labels to the
service names. This loop iterates the group service set.

Unlike many other such cases, the order of the set records matters. The
sort is made according to the index field of the records. This is bad
design as it mixes real-world information with a hack (the index field)
to make the GUI possible.

2. A For loop that simply counts to nine and makes everything (box and
label) invisible, using the iterator as the array index. It starts off where
the while loop ended, when all present services have been named and
made visible.

This is also poor design: to begin with, there should not be a limit to
the number of service types. As it is, there is such a limit (of ten); in
addition, that limit is ”hard-layouted” (the GUI elements) as well as
hard-coded.

get slots box: This is a shorthand to get a reference to one of the ten
textboxes in the calendar form. (This form is populated dynamically, so if
in Form view, it may appear as there are a whole lot of textboxes. But,
in Design view, there are only ten and they all refer to the same occa-
sion.)

Each occasion has potentially ten such boxes visible, depending on the num-
ber of services in the group service set.

Above each box is a label showing the name of the service. The digit in the
box is the number of slots of that occasion. (From the slots, look right for
occasion, and up for service.)

get service label: This works as get slots box, only it returns not the
actual box, but the label above it, used to display the service name.

The boxes are named PositionNSpaces, where 1 ≤ N ≤ 10. (In the lingo
of this document, they should have been named ServiceNSlots: “service” is
better than “position” as it is less ambiguous, and more descriptive.)

occasions changed: If there is a change to the calendar, this subroutine
must be (explicitly) called. For this reasons, changes to the calendar should
be done in the calendar form, and not directly in the calendar table.

48

A change to the occasion set makes it likely that an algorithm execution
would produce a different schedule. If there already is a schedule, it doesn’t
necessarily correspond to the (in part) new occasion set (actually, it is likely
that it doesn’t). For this reason, if there is a schedule, it is removed. Again,
there is no check to see if this is indeed necessary: such a check would have
been difficult and error-prone to implement, and as for execution, probably
as costly as a fool-proof redo.

10.2.5 Schedule

The schedule is the successful result of an algorithm execution.

If test fallout (which is invoked after execution) finds that, for (at least)
one student and one service, the minimum requirement could not be fulfilled
— then, the algorithm result is deemed a failure and the schedule is removed.
As a consequence, if there is a schedule, any schedule, it makes sense.

49

The schedule form is, in contrast to the other forms, not a place where
anything is done. It is but an interface to the schedule for that group. It is
possible to show the entire schedule, by day or by student. Also, it is possible
to show all activity a certain day, as well as all activity associated with a
certain student.

The schedule is presented as two reports: one by student, and one by day.
So, to show the schedule of any student, is just a matter of narrowing down
the complete student schedule, that which encompasses all (group) students.
The same principle is used to show the activities of any singe day. That
is, one schedule makes two reports; the interface offers two ways to show
each.

The reports are compiled by SQL-queries. Those are, unfortunately, a com-
plete mess to the human eye (even to the trained eye) as they were indeed not
written by any human, but generated by the MS Access report GUI.

As for the implementation, there is one surprise to this form: the two in-
visible textboxes with location and course data. At some point in in the
database, for some reason, that data could not be accessed directly from the
form data table. I found that, by using these textboxes as middlemen, I
could circumvent the problem. As for data consistency, it should not pose a
problem as those textboxes, in turn, indeed fetch the data from the correct
place. Of course, the only appeal of this hack is that it works.

50

11 Code notes

11.1 Algorithm code

test fallout: This subroutine is invoked after the execution of the algo-
rithm. At that point, a potential schedule is in place for the current student,
service, and occasion sets. test fallout uses the same subroutine as does
the algorithm — student needs service — to determine if every student
reaches the minimum goal for all services.

If this is the case for all students, the algorithm has succeeded. Other-
wise the test is aborted at the first failing student/service pair. Either way,
the outcome is communicated; in case of failure, the failing service is men-
tioned.

The interpretation of such a failure is not trivial. True by definition: “The
minimum goal for some service was set too high.” Depending on what is put
weight on, it can be argued that either “there were too few occasions of that
service”, “the occasions of that service had too few slots”, or simply, “there
were too many students.” In this, the tester doesn’t offer any help.

After this, the user is moved to a form depending on the test outcome. On
success, the user is moved to the groups form (so that [s]he can show the newly
created schedule, or start working on another group). On failure, the user is
moved to the the current group’s service form (so that [s]he can modify the
minimum goal and other parameters, run the algorithm anew, and hopefully
this time end up with a schedule).

In test fallout, there is a max need boolean that is never used. It is needed
for the student needs service as that uses destructive update and expects
two booleans as references.

get next slot: This function iterates a schedule and, for each record, com-
pares the data to the function arguments. If there is a match, it means a slot
has been occupied by a student; a variable is then increased to reflect that
(perhaps) the next slot is available for allocation. That is why that variable
is initiated to 1 (and not 0): if there aren’t any matching schedule records,
the slot to work with is the first one, which is empty.

This function is called from the algorithm. That algorithm needs to count
slots as not to overflow an occasion with students. (Again, looking at the end
result, it doesn’t matter what student was associated with what slot.)

51

load group students: First, all records are removed from ass students.
Second, all students in Tv Students that belong to a certain group are in-
serted into ass students. A group is defined by course and location.

move participations: At the end of its execution, the algorithm populates
the ass participations table. This table contains all data as to when
what student should carry out what service. However, there is also a sim-
ilar (but less streamlined) table, namely T ScheduleSpaces. This table is
the basis for the schedule reports that are later generated. The task of
move participations is to migrate the data of ass participations into
T ScheduleSpaces.

Four sets are used: the participations and the schedule; the calendar and the
group services. This subroutine is a consequence of bad design: obviously!
it searches back and forth in four (!) data sets. Thinking only computation-
wise, it would have been better to get away with ass participations and
populate the schedule directly. However, during the implementation of the
algorithm it was beneficial to strip the tables of anything unrelated, to be
able to observe the algorithm execution without distraction. That being said,
it looks a bit silly (inefficient and error-prone) as it is now.

student needs service: This uses count allocations to find out if a stu-
dent needs any more of a particular service. Note that it doesn’t return a
boolean. Instead, two reference booleans are destructively updated: one for
the minimum need, and one for the maximum. Also, note that, although it
would seem that a minimum need implies a maximum need, this is not so: for
technical reasons, there is only a maximum need if there is not a minimum
need.

do allocation: This adds a data item to the ass participations table.
Such an item has four fields: the student, the time (date and day part), and
the service. This table is the streamlined, intermediate representation of the
schedule; later, its data is migrated to the schedule. As an optional debug
tool, every allocation is tagged with a string that describes the algorithm
mode at allocation time.

52

11.2 Modules

11.2.1 Text

In VBA, special characters are displayed by use of the Chr function. Given
an integer argument, Chr returns the associated character. As an example,
consider the (longest) hyphen character: a long dash, sometimes called an
M-dash as it has the length of the letter M . This character is obtained with
Chr(151).

But, using such cryptic codes, the (VBA) code becomes less readable, not to
mention the time lost looking up the codes during programming.

For this reason, I made a couple of mnemonic functions. Apart from the
M-dash, those will give horizontal tabs (which do not use Chr but the Space
built-in), carriage return (Chr(13)), and line feed (Chr(10)) (typically, those
two are used in sequence).

11.2.2 Time

Day part: This enumeration is of great importance to the algorithm part of
the database, since it is part of the definition of a moment in time.

date to US style: FindNext, FindPrevious, and a couple of other record-
set methods do not work with the Swedish date representation. To cir-
cumvent that, dates are (when needed) converted to the US (searchable)
representation. This way, dates are still Swedish in the tables.

11.2.3 close and go

This subroutine is used to backtrack the user’s movement between forms.
Typically, if the user specifies some arguments in form A, and then moves to
form B, B will present a Back button to allow the user to go back to A and
redo his or her choice, before once again moving on to B.

This subroutine accomplishes its task by making A visible and closing B. As
A has been invisible during B’s reign (thus inaccessible to the user), A has
the same set of data it had when B became visible to the user. For this to
work, A is made invisible at the transition from A to B and, of course, B is
brought forward.

53

12 Summary and Conclusion

The education of to-be physicians at Akademiska sjukhuset, Uppsala, in-
cludes a couple of practical services that students take part in. Those stu-
dents are divided into groups, and each group has its own goals: the goals
specify (1) what services that group’s students should perform, and (2) for
each such service, a minimum number of times each student should attend
that service.

Naturally, it is only possible to perform any particular service at certain
occasions: each occasion offers a number of slots, to be filled by on-duty
students. The occasions make up a calendar of possible activity.

12.1 The challenge

The challenge is to distribute the students over the calendar, so that the
goal is achieved for each student, for each service. No occasion should be
overpopulated by students, and no student should be due to attend two (or
more) occasions that collide in time.

12.2 The calendar

The calendar is simple, yet flexible. At the very most, on a single day, all
services are possible to attend, twice: for each service, there is one occasion
early, and one late. This full-schedule day is one of two endpoints, the other
being a day with zero occasions (and thus zero activity); everything in be-
tween is just as representable. In practice, a more or less full schedule is
probable.

54

For instance, a Monday, March 4, 2013, could look like this:

Note: In practice, slot numbers are often the same for a particular ser-
vice.

Also: The calendar representation implies the definition of colliding events:
the same day (date), and the same day part (early or late).

12.3 The algorithm to solve it

The algorithm to solve this problem sets up a table with occasions (expanded
horizontally by their number of slots) as the x-axis, and dates (expanded
vertically by two: the day parts) as the y-axis. Then, distribution of students
is done top-down, left-right. Collision is avoided by having students only
appear once per row. Overpopulation won’t happen as the allocation of
students is done explicitly to slots, not to an occasion in general.

12.4 The UI

A couple of MS Access forms make up the UI. My thoughts when I set them
up was that each form should boil down to a single purpose, but include
everything to fulfill that purpose (and nothing else). Also, I setup an intuitive
flow of movements between forms, and I made an effort to setup mnemonic
shortcuts (and tab chains) as to minimize mouse use.

55

13 References

[1] Paul Ammann and Jeff Offut. Introduction to Software Testing. 6th
edition. Cambridge University Press, 2008. isbn: 978-0-521-88038-1.

[2] Edward Angel. Introduction to Computer Graphics. A Top-Down

Approach using OpenGL. 5th edition. Pearson/Addison-Wesley, 2009.
isbn: 0-321-54943-3.

[3] Andrew Appel. Modern Compiler Implementation in ML. Cambridge
University Press, 1999. isbn: 0-521-60764-7.

[4] Krzysztof Apt. Principles of Constraint Programming. Cambridge
University Press, 2003. isbn: 0-521-82583-0.

[5] Bitting and Skansholm. Vägen till C. Tredje upplagan.
Studentlitteratur, 2000. isbn: 978-91-44-01468-5.

[6] Cameron et al. Learning GNU Emacs. 3rd edition. O’Reilly, 2004.
isbn: 0-596-00648-9.

[7] Edgar Codd. “A Relational Model of Data for Large Shared Data
Banks”. Communications of the ACM 13.6 (1970).

[8] Cormen et al. Introduction to Algorithms. 2nd edition. MIT Press,
2001. isbn: 0-268-53196-8.

[9] Peter Dyson. The Unix Desk Reference: The hu.man Pages. SYBEX,
1996. isbn: 0-7821-1658-2.

[10] George Luger. Artificial Intelligence. Structures and Strategies for

Complex Problem Solving. Pearson/Addison-Wesley, 2009. isbn:
0-321-54589-3.

[11] Kim Marriott and Peter Stuckey. Programming with Constraints. An

introduction. MIT Press, 1998. isbn: 0-262-13341-5.

[12] McFadden, Hoffer, and Prescott. Modern Database Management. 5th
edition. Addison-Wesley, 1998. isbn: 0-8053-6054-9.

[13] Padron-McCarthy and Risch. Databasteknik. Studentlitteratur, 2005.
isbn: 978-91-44-04449-1.

[14] Vijay Saraswat. Concurrent Constraint Programming. MIT Press,
1993. isbn: 0-262-19297-7.

